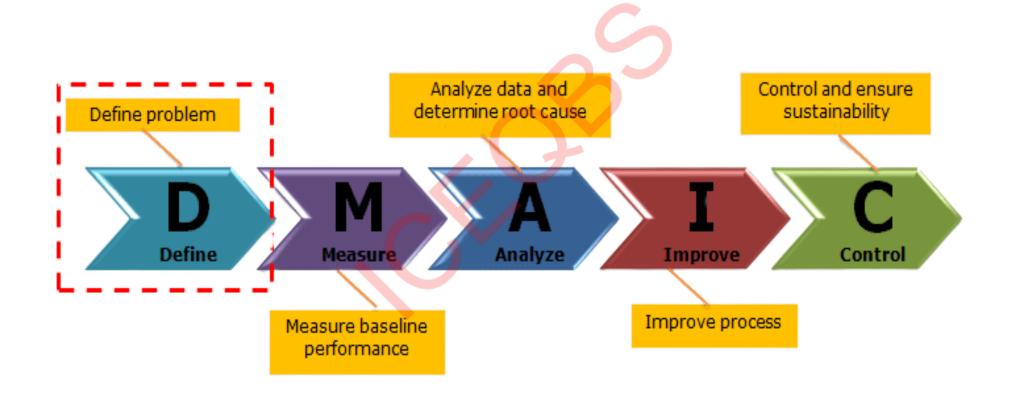
# Reduction of Printing scrap rate in

Paper Bags






## Background

High scrap generation in the printing stage of paper bag manufacturing—currently averaging around 5%—is leading to significant material wastage, rework, and delivery delays. The primary causes include smudges, print misalignment, and inconsistent color density, all of which increase the consumption of expensive consumables such as specialty papers, food-grade inks, and printing plates. These quality issues not only impact production efficiency but also affect customer satisfaction and brand credibility, especially among key FMCG and retail clients who demand consistent packaging quality.

By reducing the scrap rate to 2% or lower, the project aims to save considerable amount annually, while achieving higher first-pass yield and better process capability (Cp, Cpk > 1.67). The improvement will help ensure faster turnaround times, reduced rework, and more reliable color and print consistency, directly contributing to cost optimization, leaner operations, and stronger customer relationships.

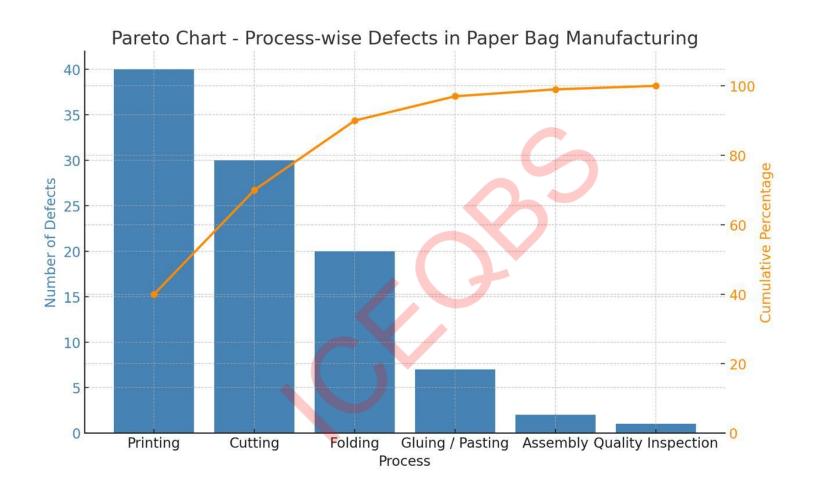
# **DEFINE PHASE**



# VOC & CTQ

## **CTQ Tree:**

| Voice of customer                                      | Critical to X                          | Primary Metric for improvement                                          |
|--------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| "We need sharp, color-consistent, defect-free prints." | CTQ — Print sharpness, ink consistency | Primary Metric - Y = % Scrap (Printing) Secondary Metric - Productivity |


## Baseline Performance of Primary Metric (9 months data as Line chart)



### **Inference:**

• Last 9 months data shows a significant variation and hence ideal problem to be taken up as a Six Sigma Project.

## **Pareto chart**

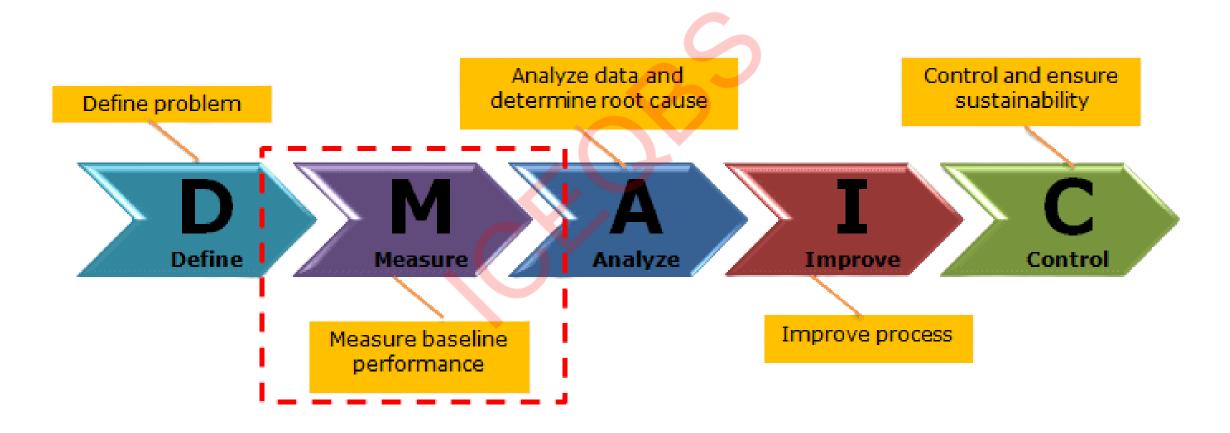


**Inference:** The project is going to focus only on **Printing Process** 

# SIPOC

## **Scrap Reduction in Printing**

| Suppliers       | Inputs         | Process         | Outputs            | Customers     |
|-----------------|----------------|-----------------|--------------------|---------------|
| Paper suppliers | Paper rolls    | Load roll       | Printed bags       | FMCG brands   |
| Ink suppliers   | Ink & solvents | Ink mixing      | Scrap bags         | Retail chains |
| Operators       | Setup sheets   | Plate alignment | Inspection reports | Food chains   |
| Maintenance     | Machine uptime | Printing        | Quality report     | QC team       |


# **Project Charter**

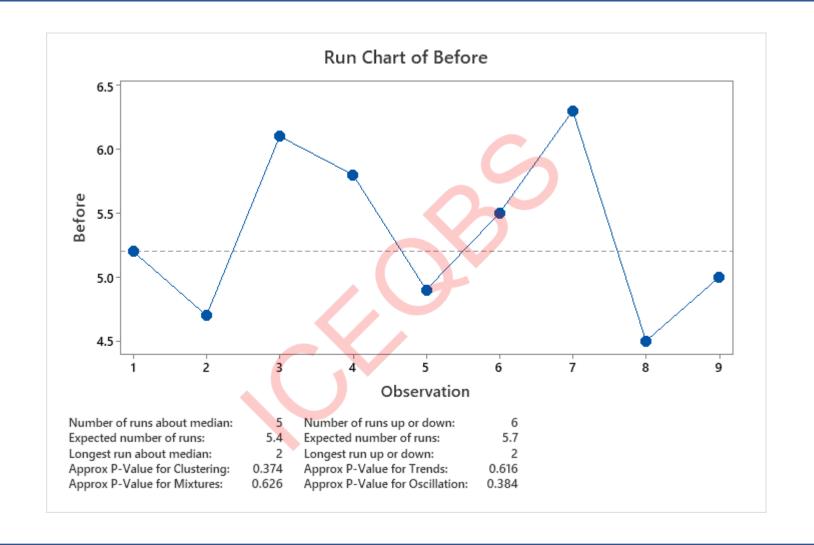
| Project Title:                                                                                                                                                                                                                                                                                                                                                                     | Reduction of Scrap% in Machining process from 3% to 1%                                                                                                                                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |  |  |  |  |
| Project Leader                                                                                                                                                                                                                                                                                                                                                                     | Project Team Members:                                                                                                                                                                                                               |  |  |  |  |
| Shameem Ahammed                                                                                                                                                                                                                                                                                                                                                                    | Printing Operator, QC Inspector, Maintenance                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                    | Technician, Ink Technician                                                                                                                                                                                                          |  |  |  |  |
| Champion/Sponsors:                                                                                                                                                                                                                                                                                                                                                                 | Key Stake Holders                                                                                                                                                                                                                   |  |  |  |  |
| Plant Head                                                                                                                                                                                                                                                                                                                                                                         | Cutting teams, Folding teams, Assembly teams, QC teams, Packaging teams, FMCG brands, Food chains, Retailers, Distributors                                                                                                          |  |  |  |  |
| Problem Statement:                                                                                                                                                                                                                                                                                                                                                                 | Goal Statement:                                                                                                                                                                                                                     |  |  |  |  |
| Currently, the <b>printing process in paper bag manufacturing average scrap rate of ~5%</b> , primarily due to defects such as misalignment, and inconsistent color density. This results in paper rolls and ink, higher rework costs, and delayed delive high rejection percentage directly impacts profitability, cust satisfaction, and brand image for FMCG and retail clients | months, while maintaining compliance with <b>packaging quality standards</b> and ensuring consistent print quality (sharpness, alignment, color uniformity). Additionally, improve <b>process capability (Cp, Cpk &gt; 1.67)</b> to |  |  |  |  |
| Secondary Metric                                                                                                                                                                                                                                                                                                                                                                   | Assumptions Made:                                                                                                                                                                                                                   |  |  |  |  |
| Productivity                                                                                                                                                                                                                                                                                                                                                                       | Stable production volume and order mix                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                    | Operator adherence to new SOPs                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                    | Reliable quality measurement data                                                                                                                                                                                                   |  |  |  |  |

# **Project Charter**

| Risk to Success:                       |
|----------------------------------------|
| Operator resistance to process changes |
| Machine downtime or setup delays       |
| Variation in paper or ink quality      |
|                                        |
| Out of Scope:                          |
| Cutting, folding, gluing, packaging    |
|                                        |
|                                        |
| Project Timeline:                      |
| 6 Months                               |
|                                        |
|                                        |

# MEASURE PHASE




## **Data collection – Histogram (Before improvement)**



### Inference:

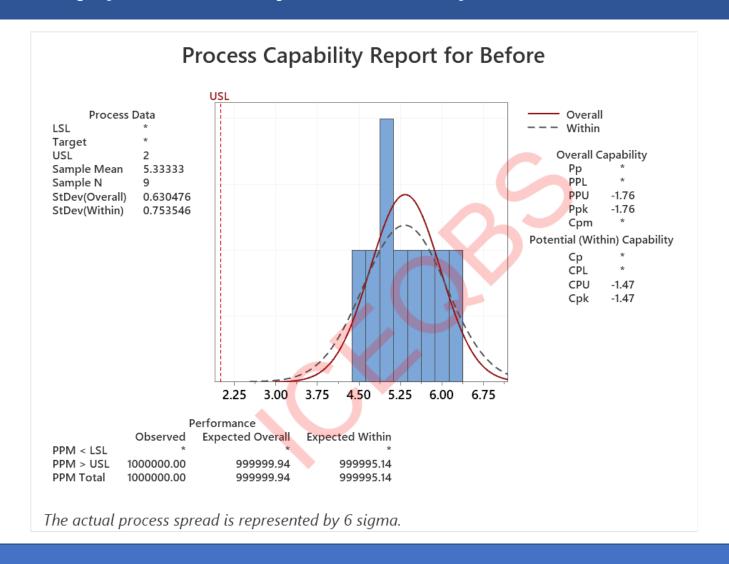
• Data is normally distributed over the mean

## **Data collection – Run Chart (Before improvement)**



### Inference:

P > 0.05 - No special causes in the process. Data can be used for further analysis


## **Data collection – Normality plot (Before improvement)**



### Inference:

• P > 0.05 in all scenarios, thus all the data is normally distributed

## **Process Capability (Before improvement)**



### Inference:

Process is highly not capable

## Fish Bone Diagram

- High humidity affecting ink drying and adhesion.
- Temperature fluctuations altering ink viscosity.
- Dust or contamination in the printing area.
- Poor lighting leading to missed inspection of defects.
- Inadequate ventilation causing fumes, operator fatigue, and print quality issues.

- Incorrect ink viscosity settings.
- Poor web tension control during printing.
- Lack of standardized plate mounting and registration methods.
- Ineffective process control for ink density and alignment.
- Excessive trial runs during setup due to poor changeover practices.

- Operator skill variation in handling printing setups.
- Inconsistent adherence to Standard Operating Procedures (SOPs).
- Fatigue or distraction during long shifts.
- Inadequate training in print quality standards (color density, alignment).
- Communication gaps between operators, QC, and supervisors.

**ENVIRONMENT** 

**METHOD** 

MAN

**MEASUREMENT** 

**MACHINE** 

- Lack of standardized color reference (Pantone/Delta E checks).
- Inaccurate or uncalibrated densitometers and gauges.
- Subjective visual inspection by operators.
- No regular Gauge R&R validation for inspection tools.
- Inconsistent sampling frequency and methods across shifts.

- Printing plate wear or roller misalignment.
- Ink pump or feeder malfunction causing uneven ink spread.
- Inadequate preventive maintenance of printing machines.
- Drying unit malfunction leading to smudges.
- Vibration or web tension instability affecting registration.

- Paper GSM inconsistency across batches.
- Moisture in paper rolls causing warping or poor print absorption.

**MATERIAL** 

- Ink contamination or improper mixing.
- Surface defects on paper (wrinkles, uneven coating).
- Variation in adhesive or coating compatibility with inks.

## **3M Analysis for Waste**

### **MUDA**

- Reprinting paper bags due to smudged or misaligned logos.
- Excessive paper waste during print registration and trial runs.
- Waiting time for quality approval before starting bulk production

### **MURA**

- Variation in print density and color tone between different shifts.
- Inconsistent bag dimensions after printing and cutting processes.
- Fluctuations in ink viscosity and drying time across batches.

### **MURI**

- Overloading operators with multiple printing machines simultaneously.
- Running printing plates and rollers beyond recommended usage, causing breakdowns.
- Operating machines continuously without preventive maintenance, leading to sudden stoppages.

## **8 Wastes Analysis**

Defects

Bags rejected due to misaligned logos or blurred printing. Scrap generated from color mismatch and ink smudging.

Overproduction

Printing extra bags "just in case" of customer order increase.

Running multiple trial prints before stabilizing machine registration and ink settings.

Waiting

Printing machines idle while waiting for QC approval of first samples.

Operators waiting for paper rolls or inks to be issued from stores.

**Non-Utilized Talent** 

Operators not involved in problem-solving or process improvement discussions. Lack of training opportunities for skill enhancement in print quality control.

Transportation

Unnecessary movement of semi-finished bags between distant production areas. Carrying paper rolls long distances to printing machines due to poor layout

Inventory

Excess WIP (work-in-progress) paper stacks stored near printing machines. Overstock of inks, plates, and rollers not immediately required for current jobs.

Motion

Operators walking frequently to fetch color samples, plates, or inspection tools. Manual handling of heavy paper rolls without proper trolleys or lifts.

Overprocessing

Re-printing or overlaying designs to cover smudges or faded ink.

Applying excess ink layers beyond customer's visual quality requirement.

# **Action Plan for Low Hanging Fruits**

## **Special Causes (sudden failures / abnormalities)**

| Issue Observed                         | Lean Tool                            | Action Plan                                                               | Benefit                                       |
|----------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
| Sudden printing roller/plate failure   | TPM (Total Productive Maintenance)   | Implement preventive maintenance and daily operator-led roller inspection | Reduced downtime, stable printing accuracy    |
| Ink pump/drying unit breakdown         | Visual Controls + TPM                | Add ink level/dryer temperature indicators and daily checklists           | Fewer smudges, improved ink adhesion          |
| Out-of-spec paper batch from supplier  | Incoming Quality Control (Poka-Yoke) | Strengthen supplier certification and incoming roll inspections           | Fewer rejections, reduced paper scrap         |
| Printing software/control system crash | Standardized Work                    | Maintain validated backup machine programs & settings                     | Faster recovery, less production delay        |
| Abrupt power fluctuation               | Andon System + Backup                | Install voltage stabilizers and provide UPS backup for critical controls  | Avoid unexpected stoppages, ensure continuity |

# **Action Plan for Low Hanging Fruits**

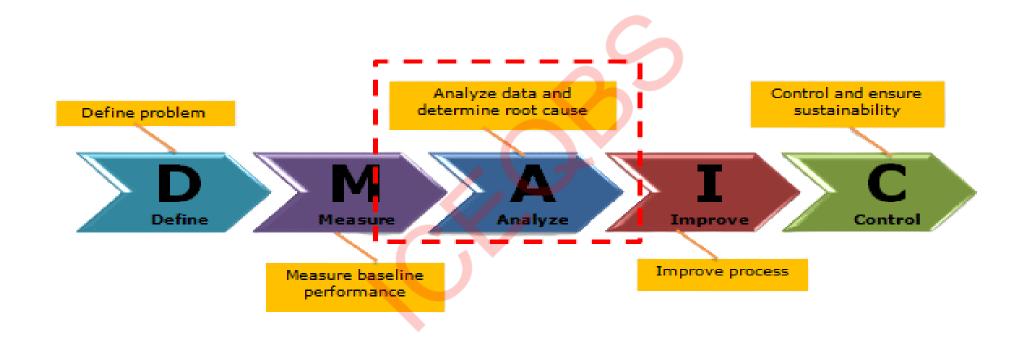
## **Special Causes (sudden failures / abnormalities)**

| Issue                                       | Lean Tool                       | Action Plan                                                                | Benefit                                 |
|---------------------------------------------|---------------------------------|----------------------------------------------------------------------------|-----------------------------------------|
| Operators overloaded with multiple machines | Work Balancing / Line Balancing | Redistribute machine responsibilities and use helper operators             | Reduced errors, improved operator focus |
| Overused printing plates and rollers        | Kanban for Plate/Roller Change  | Visual tool life tracking and Kanban replacement cards                     | Prevents breakdowns, reduces scrap      |
| Variation in print density                  | Standard Work + SMED            | Standardize ink viscosity, registration parameters, and quick-change setup | Consistent productivity, fewer defects  |
| Inconsistent finish quality                 | SPC Control Charts              | Monitor color density and alignment stability with control charts          | Stable quality, customer satisfaction   |
| Rework due to misprints/defects             | Poka-Yoke                       | Error-proof plate alignment and registration setup                         | Lower rework hours, higher FPY          |
| Waiting for QC approval                     | Point-of-Use Inspection         | Provide in-line color reference charts and go/no-go print templates        | Reduced waiting, faster flow            |

# **Action Plan for Low Hanging Fruits**

## Eight Wastes

| Waste          | Lean Tool             | Action Plan                                              | Benefit                                    |
|----------------|-----------------------|----------------------------------------------------------|--------------------------------------------|
| Overproduction | Kanban Scheduling     | Print only as per customer orders                        | Lower WIP, reduced scrap risk              |
| Transportation | Cellular Layout       | Place cutting/folding machines near printing line        | Faster flow, less handling damage          |
| Motion         | 5S                    | Keep inks, plates, and inspection tools at point of use  | Reduced operator walking, faster setups    |
| Inventory      | Pull System           | Limit paper rolls and WIP near machines with Kanban bins | Lower storage cost, smoother flow          |
| Overprocessing | Standard Work         | Eliminate unnecessary reprints and double inking         | Saves time and material cost               |
| Defects        | Poka-Yoke             | In-process visual checks for registration & ink spread   | Scrap reduced from 5% → ≤2%                |
| Waiting        | Andon / Visual Boards | Signal QC delays or supply shortages immediately         | Quick resolution, reduced idle time        |
| Unused Talent  | Kaizen Events         | Involve operators in daily quality improvement           | Engaged workforce, continuous improvements |


## **Top 12 Prioritized Root Causes (Based on Net Score)**

- 1. Plate wear **291**
- 2. Ink viscosity variation **291**
- 3. Roller misalignment **277**
- 4. Operator skill variation 229
- 5. Web tension variation **229**
- 6. Ink contamination **211**
- 7. Paper GSM inconsistency **211**
- 8. Ink drying variation **211**
- 9. Calibration errors **211**
- 10. SOP adherence **169**
- 11. Moisture in paper rolls 195
- 12. Humidity (environment) **195**

# **Data Collection Plan**

| Output / Input            | Type of Data | Measurement Method                           | Unit          | Frequency     | Responsibility       |
|---------------------------|--------------|----------------------------------------------|---------------|---------------|----------------------|
| % Scrap (Primary Y)       | Continuous   | Scrap count / production log                 | %             | Daily         | Production Engineer  |
| Print Alignment Accuracy  | Continuous   | Visual inspection + alignment gauge          | mm offset     | Shift-wise    | QC Inspector         |
| Color Density Consistency | Continuous   | Densitometer / Delta E measurement           | ΔE units      | Shift-wise    | QC Inspector         |
| Plate Wear                | Continuous   | Plate inspection (magnification, wear check) | mm wear       | Weekly        | Operator / QC        |
| Ink Viscosity             | Continuous   | Zahn cup / viscosity cup test                | sec           | Shift-wise    | Operator             |
| Roller/Dryer Calibration  | Attribute    | Calibration record / checklist               | Yes/No        | Monthly       | Maintenance Engineer |
| Web Tension Stability     | Continuous   | Tension gauge reading                        | N/m           | Weekly        | Maintenance Engineer |
| Paper GSM Consistency     | Continuous   | GSM tester / balance                         | g/m²          | Lot-wise      | QC Lab               |
| Paper Moisture Content    | Continuous   | Moisture meter                               | %             | Lot-wise      | QC Lab               |
| Ink Contamination Check   | Attribute    | Visual inspection / filtration test          | Pass/Fail     | Lot-wise      | QC Lab               |
| Operator Skill            | Attribute    | Training & certification record              | Certified/Not | Once/operator | HR / Training        |
| SOP Adherence             | Attribute    | Process audit checklist                      | Yes/No        | Weekly        | QA / Supervisor      |
| First Pass Yield (FPY)    | Continuous   | Production & inspection log                  | %             | Daily         | Production Engineer  |
| On-Time Delivery (OTD)    | Continuous   | Planning & dispatch report                   | %             | Weekly        | Planning Dept.       |

# ANALYSE PHASE



## **Analyse – Hypothesis testing**

#### **Regression Equation**

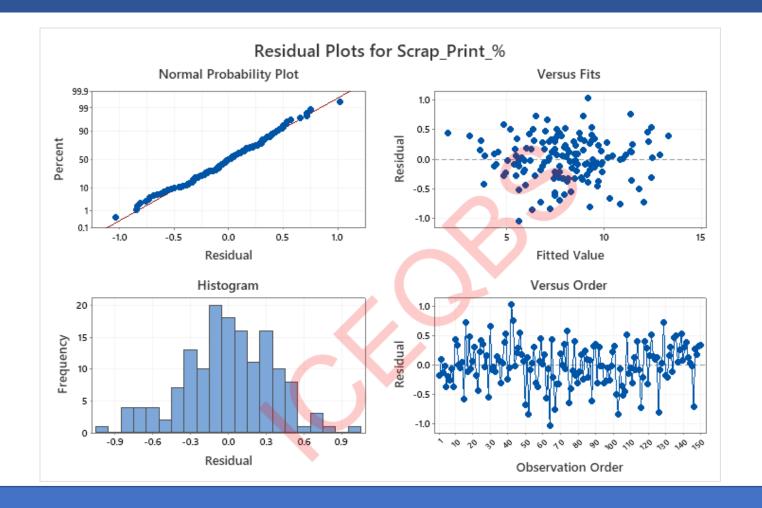
Scrap\_Print\_% = 0.911 + 0.11286 Plate\_Wear\_Index\_% + 0.6400 Ink\_Viscosity\_Dev\_% + 3.2298 Roller\_Misalignment\_mm

#### Coefficients

| Term                   | Coef    | SE Coef | T-Value | P-Value | VIF  |
|------------------------|---------|---------|---------|---------|------|
| Constant               | 0.911   | 0.113   | 8.04    | 0.000   |      |
| Plate_Wear_Index_%     | 0.11286 | 0.00520 | 21.70   | 0.000   | 1.01 |
| Ink_Viscosity_Dev_%    | 0.6400  | 0.0102  | 62.94   | 0.000   | 1.01 |
| Roller_Misalignment_mm | 3.2298  | 0.0997  | 32.38   | 0.000   | 1.01 |

### **Model Summary**

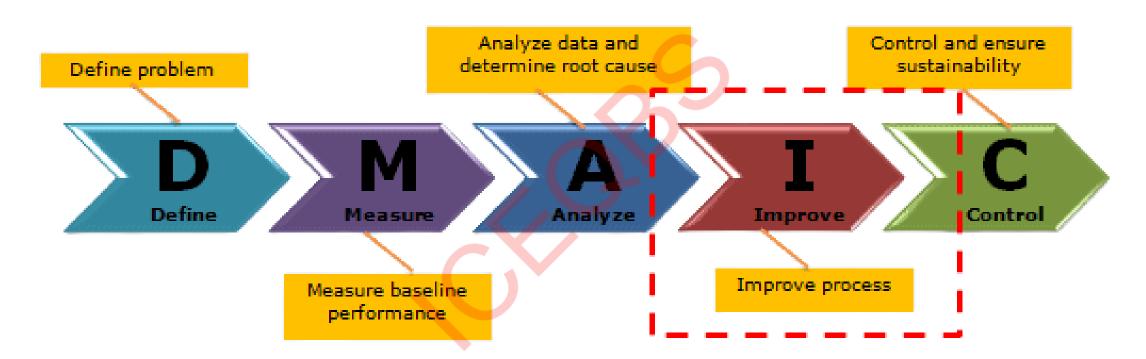
| S        | R-sq   | R-sq(adj) | R-sq(pred) |
|----------|--------|-----------|------------|
| 0.365930 | 97.33% | 97.28%    | 97.18%     |


#### **Analysis of Variance**

| Source                 | DF  | Adj SS | Adj MS  | F-Value | P-Value |
|------------------------|-----|--------|---------|---------|---------|
| Regression             | 3   | 712.66 | 237.553 | 1774.04 | 0.000   |
| Plate_Wear_Index_%     | 1   | 63.07  | 63.066  | 470.98  | 0.000   |
| Ink_Viscosity_Dev_%    | 1   | 530.39 | 530.393 | 3960.97 | 0.000   |
| Roller_Misalignment_mm | 1   | 140.43 | 140.426 | 1048.70 | 0.000   |
| Error                  | 146 | 19.55  | 0.134   |         |         |
| Total                  | 149 | 732.21 |         |         |         |

## Inference:

• Since p < 0.05, thus not all means are equal


## **Analyse – Hypothesis testing**



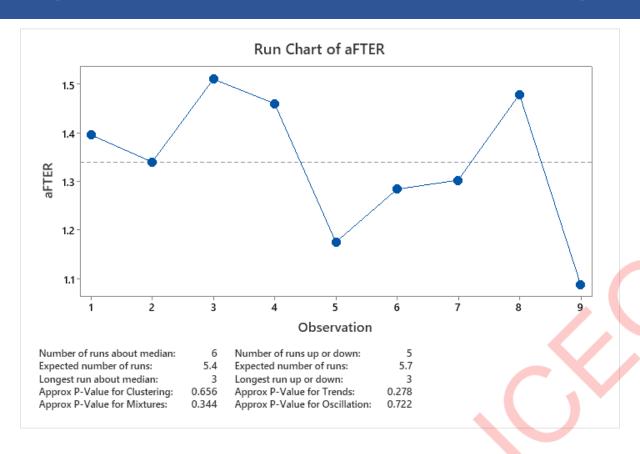
### Inference:

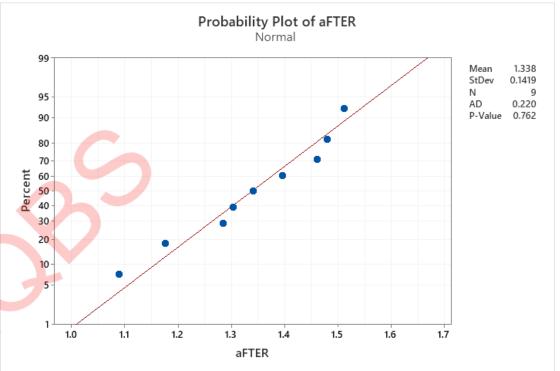
• Both plots confirm that the residuals are normal, independent, and random — meaning the model fits the data well, and the underlying assumptions for regression or process analysis are satisfied.

# **IMPROVE PHASE**



## **Improve**


### Validated Root Causes:


- Ink Viscosity
- Plate Wear
- Roller Alignment

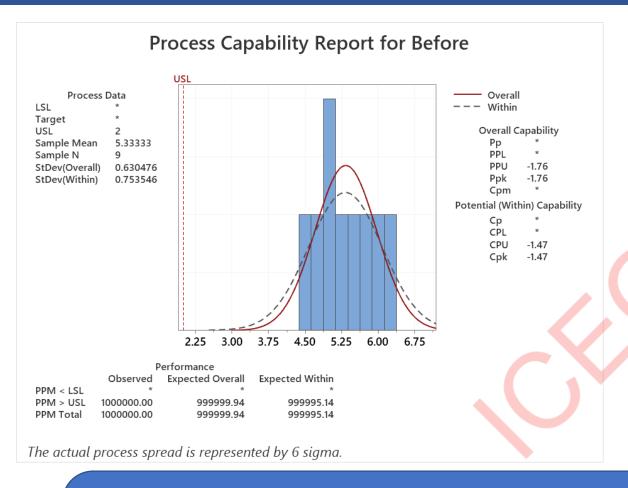
### Action Plan:

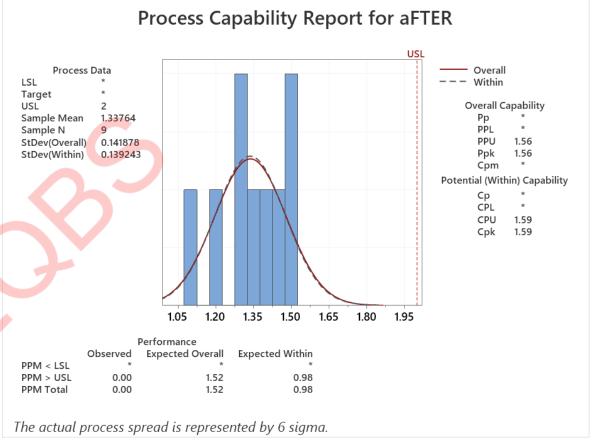
- Preventive Maintenance
- Viscosity Control
- Roller Alignment
- Operator Training
- Spc

## Improve – Run chart and Normality Test (After Improvement)






#### Inference:


• Run chart – process is stable there is no special causes in the process (p value > 0.05)

#### Inference:

Normality test – Data are normally distributed

## Improve – Process capability – Before & After Improvement





#### Inference:

- Before Cpk < After Cpk, which shows process is much more capable after improvement</li>
- There is less variability in system since stdev reduced after improvement
- After improvement the data are normally distributed near the target within specified limit

# Improve –After Improvement (Statistical validation for Improvement – Hypothesis Testing)

### Two-Sample T-Test and CI: Before, aFTER

 $\mu_1$ : population mean of Before  $\mu_2$ : population mean of aFTER Difference:  $\mu_1$  -  $\mu_2$ 

Equal variances are not assumed for this analysis.

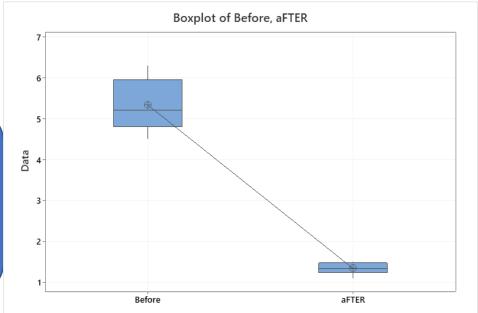
#### **Descriptive Statistics**

| Sample | Ν | Mean  | StDev | SE Mean |
|--------|---|-------|-------|---------|
| Before | 9 | 5.333 | 0.630 | 0.21    |
| aFTER  | 9 | 1.338 | 0.142 | 0.047   |

#### **Estimation for Difference**

|            | 95% CI for     |  |  |  |  |  |  |
|------------|----------------|--|--|--|--|--|--|
| Difference | Difference     |  |  |  |  |  |  |
| 3.996      | (3.499, 4.492) |  |  |  |  |  |  |

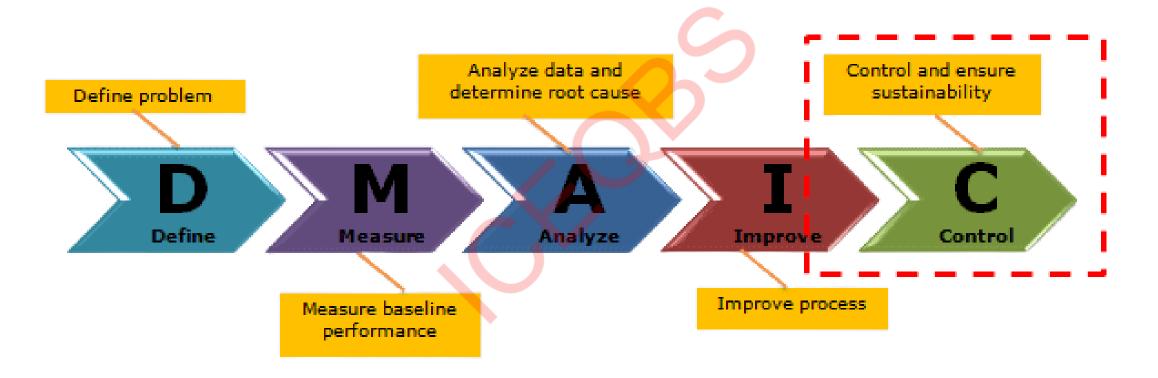
#### Test


Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

| T-Value | DF | P-Value |
|---------|----|---------|
| 18.55   | 8  | 0.000   |

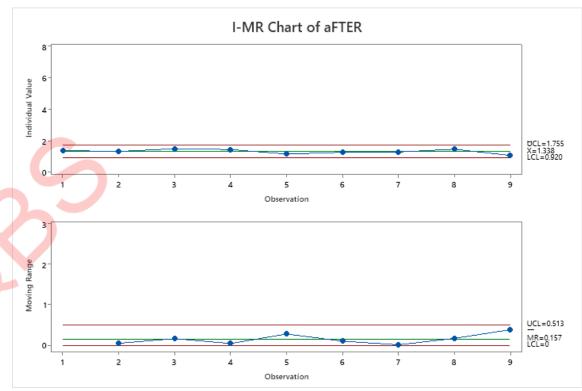
### Inference:

- Since P value is less than 0.05, there is enough evidence to reject the null hypothesis and we can conclude that the difference between the population means is statistically significant.
- It is also visible from the individual value plot & box plot, there is clear difference in mean after improvement which is closer to required % scrap






## **FMEA**


| #  | Process Step            | Function /<br>Requirement  | Potential Failure<br>Mode   | Effect on CTQs /<br>Y (% scrap)        | S | Potential<br>Causes                                      | O | Current<br>Controls<br>(Prev/Det)            | D | RPN | Recommended Actions (acceptance criteria)                                                      | Owner       | Due | Residual<br>S/O/D/RPN |
|----|-------------------------|----------------------------|-----------------------------|----------------------------------------|---|----------------------------------------------------------|---|----------------------------------------------|---|-----|------------------------------------------------------------------------------------------------|-------------|-----|-----------------------|
| 1  | Ink prep                | Correct viscosity at press | Ink viscosity out of spec   | Color shift,<br>smearing →<br>reprints | 8 | Poor<br>mixing/tempera<br>ture control;<br>solvent drift | 6 | Cup/viscometer<br>checks, operator<br>visual | 6 | 288 | Inline viscometer + temp<br>control; mixing SOP; SPC on<br>viscosity (±3%); lot hold if<br>OOS | Process Eng | W2  | 8/3/3/72              |
| 2  | Infeed/registrati<br>on | Maintain roller geometry   | Roller<br>misalignment      | Registration errors, ghosting          | 8 | Setup error,<br>thermal growth                           | 5 | Manual<br>alignment,<br>periodic checks      | 6 | 240 | Laser alignment tool; shim standards; first-article grid check every setup                     | Maint/PE    | W2  | 8/3/3/72              |
| 3  | Plate mount             | Plate condition maintained | Plate wear /<br>damage      | Dot gain, blur, repeats → scrap        | 7 | Plate reuse,<br>harsh cleaning                           | 5 | Visual inspection                            | 6 | 210 | Plate wear index & life log;<br>approved cleaning SOP;<br>quarantine worn plates               | QA / Sup    | W3  | 7/3/3/63              |
| 4  | Web handling            | Stable web<br>tension      | Web tension variation       | Stretch, skew,<br>wrinkles             | 7 | Brake drift,<br>sensor noise                             | 4 | Operator setting, occasional check           | 6 | 168 | Closed-loop tension control;<br>CV≤2% alarm; daily sensor<br>calibration                       | Maint       | W3  | 7/2/3/42              |
| 5  | Ink system              | Clean ink<br>delivery      |                             | Specks/fish-eyes  → print defects      | 6 | Dirty<br>buckets/filters,<br>backflow                    | 4 | Filter change<br>weekly                      | 5 | 120 | Inline filtration + change<br>counters; sealed lids; 5S at<br>ink room                         | QA          | W2  | 6/2/3/36              |
| 6  | Substrate               | GSM consistency            | Paper GSM inconsistency     | Mottle, pressure variation             | 6 | Supplier<br>variability,<br>storage                      | 4 | COA review, incoming check                   | 5 | 120 | Tighten AQL; moisture conditioning racks; quarantine OOS rolls                                 | SCM / QA    | W4  | 6/2/3/36              |
| 7  | Drying                  | Proper solvent evaporation | Ink under/over drying       | Offset/blocking or brittle             | 6 | Dryer<br>temp/airflow<br>drift                           | 4 | Temperature setpoint check                   | 5 | 120 | PID tune; airflow<br>verification; run cards with<br>temp—speed matrix                         | Process Eng | W3  | 6/2/3/36              |
| 8  | Setup & run             | Operator consistency       | Operator skill variation    | Setup scrap,<br>slow recovery          | 5 | Inadequate<br>training                                   | 5 | Buddy checks                                 | 6 | 150 | Skill matrix; standardized setup checklist; certification & refreshers                         | HR / Sup    | W4  | 5/3/3/45              |
| 9  | Handling                | Cap/roll handling          | Improper<br>handling damage | Edge dents,<br>creases                 | 5 | Rough transport,<br>stacking                             | 4 | Visual checks                                | 6 | 120 | Poka-yoke trolleys; FIFO lanes; visual standards                                               | Sup         | W3  | 5/2/3/30              |
| 10 | Measurement             | Gauge system               | Viscosity gauge<br>error    | Missed OOS → hidden scrap              | 7 | Poor<br>MSA/calibration                                  | 3 | Annual cal only                              | 6 | 126 | MSA (GRR ≤10%); monthly<br>cal check; dual-cup<br>verification                                 | QA          | W4  | 7/2/3/42              |

# **CONTROL PHASE**



## Improve (Statistical validation for Improvement – I-MR Chart)





### **Inference:**

- As seen in control chart, before improvement mean was high and there was high variability process and after improvement, it has achieved to target.
- There is a significant reduction in variation

# **Control Plan**

| # | Process / CTQ | Characteristic (X or Y)      | Target / Spec<br>(after improve)             | How to Measure<br>(gage/method)                               | Sampling / Frequency                                 | Control Method<br>(SPC/Check)                   | Owner                     | Reaction / OCAP                                                                                                                                    |
|---|---------------|------------------------------|----------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Final quality | Y: % Scrap_Print             | Target ≤ 1.0%<br>(alarm > 1.5% shift<br>avg) | Line reject log → QA<br>confirm                               | Per roll + hourly roll-up                            | <b>p-chart</b> by hour; Pareto of defect codes  | Supervisor / QA           | Point beyond UCL or 2 consecutive hours > 1.5% → stop, isolate WIP, run cause checklist (viscosity/roller/plate), corrective action before restart |
| 2 | Ink prep      | X:<br>Ink_Viscosity_Dev_%    | <b>±3%</b> vs setpoint @ 25 °C               | Zahn/Brookfield (temp-<br>controlled) or inline<br>viscometer | First-off, every <b>30 min</b> , and at batch change | I-MR chart (or X-R if subgrouping) + spec check | Process Eng /<br>Operator | Any reading outside ±3% or SPC rule breach → adjust solvent/temperature, re-test; if 2 breaches/shift → hold lot, PE review                        |
| 3 | Registration  | X: Roller_Misalignment_ mm   | ≤ <b>0.30 mm</b><br>(lateral/parallel)       | Laser alignment/dial indicator                                | At setup + every changeover                          | Setup checklist + go/no-go<br>record            | Maintenance / PE          | >0.30 mm → realign before run;<br>repeat within 1 week → escalate<br>to PM on mounts/bearings                                                      |
| 4 | Plate mount   | X: Plate_Wear_Index_%        | <b>≤ 8%</b> (retire ≥12%)                    | Microscopy / wear index<br>chart                              | Each plate at mount & end of shift                   | I-MR chart on wear index                        | QA / Supervisor           | ≥12% or trending up 3 points → quarantine plate set, replace; log life count                                                                       |
| 5 | Web handling  | X:<br>Web_Tension_CV_%       | ≤ 2% CV steady-<br>state                     | Tension transducer trend                                      | First-off + <b>hourly</b> glance;<br>alarmed online  | Run chart with hi/lo alarm                      | Operator / Maint          | >2% CV for >5 min → check<br>brake/sensor, recalibrate; if<br>unresolved → call Maint, hold<br>product until visual OK                             |
| 6 | Substrate     | X: GSM_SD_gm2                | SD ≤ 2.0 g/m <sup>2</sup>                    | COA + random cross-roll check                                 | Incoming lot + one roll/lot                          | AQL check; record sheet                         | Incoming QA / SCM         | OOS → quarantine lot, inform supplier; allow controlled use only with PE waiver                                                                    |
| 7 | Ink system    | X: Ink_Contam_PPM            | ≤ <b>50 ppm</b> particles/gels               | Filter patch/PPM test                                         | Each batch + weekly line check                       | Checksheet + acceptance                         | QA                        | >50 ppm → change filters, re-mix; re-sample before release                                                                                         |
| 8 | Drying        | X: Drying_Time_Dev_s         | <b>±0.5 s</b> vs run card                    | Draw-down test / inline timer                                 | First-off + every changeover                         | Spec check + record                             | Process Eng               | Out of spec → adjust temp/airflow per matrix; re-verify before release                                                                             |
| 9 | People        | X: Operator_Errors_perS hift | ≤ 1/shift                                    | Error log<br>(setup/adjustment)                               | Per shift                                            | Weekly trend & Pareto                           | Supervisor                | >1 for 2 shifts → refresher on SOP;<br>LPA focus next week                                                                                         |

## Conclusion





Project has achieved its intended results