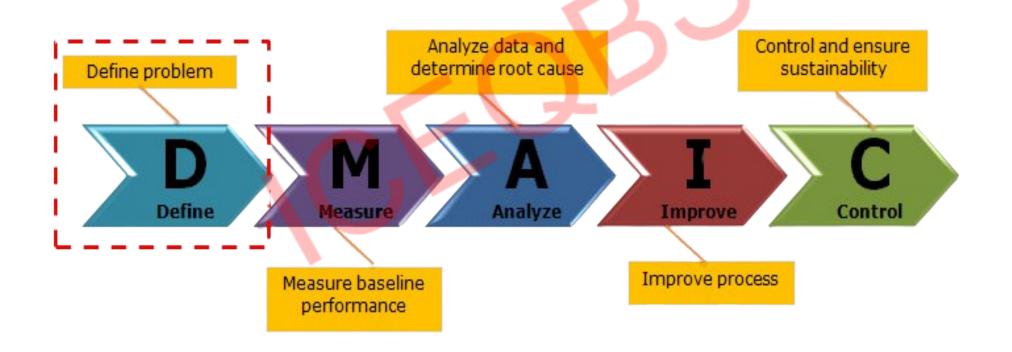
Reduce Paper Cup Leakage Rate



Background

Leakage in paper cups is one of the most critical quality issues impacting both production efficiency and customer satisfaction. The current leakage rate of 3.08% leads to significant material loss, increased rework, and higher production costs. In addition, leakage defects have caused multiple customer complaints, risking the company's reputation and long-term business relationships.

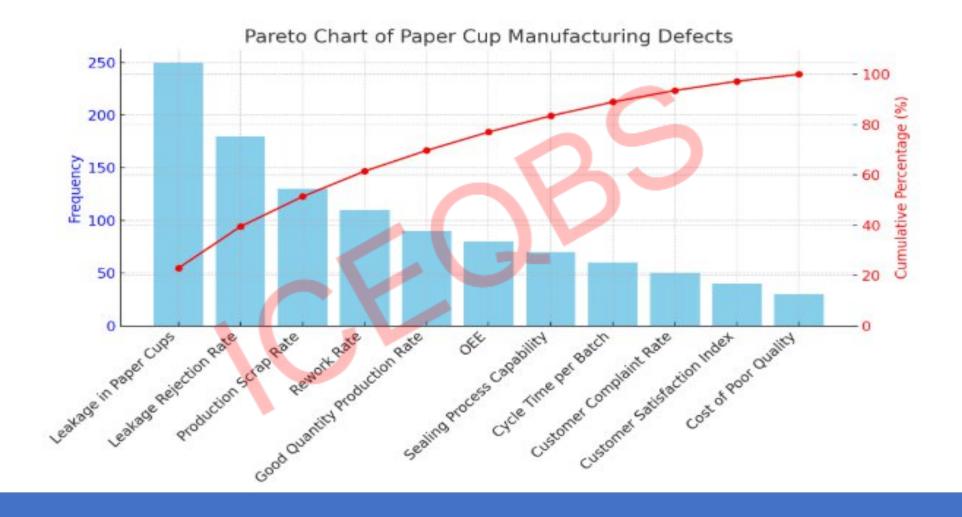
•Reducing the leakage rate to below 1.5% will directly lower the Cost of Poor Quality (COPQ), improve profit margins, and enhance product reliability. Improved sealing performance will also reduce downtime and maintenance needs, contributing to a higher Overall Equipment Effectiveness (OEE). This project supports the company's strategic goals of quality excellence, cost reduction, and customer retention.

DEFINE PHASE

VOC & CTQ

CTQ Tree:

Voice of customer	Critical to X	Primary Metric for improvement
"Customers expect cups to be durable and leak-free during regular use. Frequent leakage is causing inconvenience and reducing confidence in product quality."	CTX - Cost	Primar Rejection Metric- Y = % Leakage Rejection rate Secondary Metric - Productivity


Baseline Performance of Primary Metric

Inference:

•Last 9 months data shows a significant variation and hence ideal problem to be taken up as a Six Sigma Project.

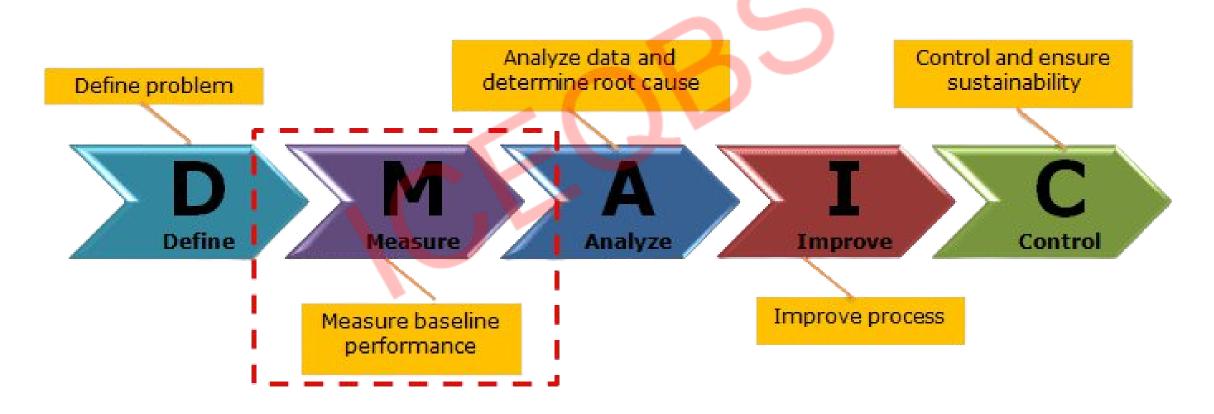
Pareto chart

Inference:

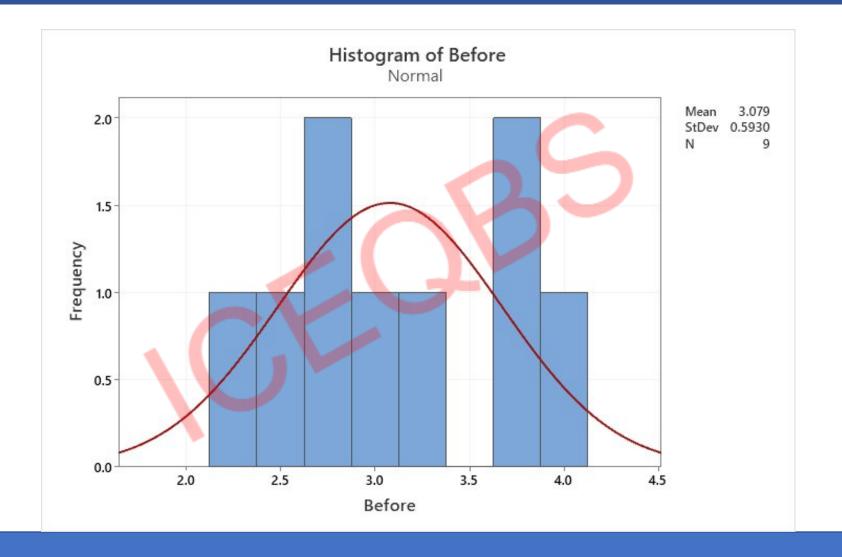
•Leakage contributes and included in the scope of the project

SIPOC

Suppliers (S)	• Inputs (I)	Process (P)	Outputs (O)	Customers (C)
• - PE-coated paper roll suppliers	 - PE-coated paper and bottom roll (specified GSM) 	1. Receive PE-coated paper rolls and bottom rolls	- Finished paper cups (leak-free)	• - End customers / distributors
• - Bottom roll suppliers	 - Machine parameters (temperature, pressure, speed) 	• 2. Printing and cutting of blanks	Rejected cups due to leakage or sealing defects	- Quality assurance department
• - Printing & cutting section	- Sealing tools and heaters	3. Forming paper cups (side sealing)	- Process data (leak % reports, OEE reports)	- Production planning department
• - Maintenance team	- Operator skills and training	4. Bottom insertion and sealing	- Customer delivery batches	 - Management / business owners
 - Operators & production staff 	- Work instructions and SOPs	5. Curling and finishing		
		6. Leak testing (manual/automatic)		
		7. Visual inspection and packing		
		8. Rework or scrap of defective cups		


Project Charter

Project Title: Le	Leakage Rejection Rate		
Project Leader	Project Team Members:		
	Mr.Nithin, Mr.William , Mr.Hamza Yahia		
Mahesh Pillai			
Champion/Sponsors:	Key Stake Holders		
Mr.Hamid Akther	Production, QC, Sales, Procurement, R&D,		
	Logistics, Finance		
	Distributors, Retailers, Brands, Event Companies, Caterers, Exporters, Consumers		
Problem Statement:	Goal Statement:		
During the period from January to September , the average leakage rate in paper cup production was 3.08% , exceed acceptable quality standard of 1.5% This defect results increased production rejections, higher rework and scrap and customer complaints. The issue impacts overall equiefficiency (OEE)	ing the in ext 6 months o rates,		


Project Charter

Tangible and Intangible Benefits:		Risk to Success:			
Reduced scrap, rework, and Improved OEE and sealing continuous production costs and helping continuous production statisfaction. Better operator skills and pro	onsistency nigher yield and fewer complaints	Variations in machine settings or temperature control Operator inconsistency or lack of adherence to SOPs Raw material quality fluctuations Delayed maintenance or lack of spare parts			
n Scope:		Out of Scope:			
Sealing process analysis and improvement Machine parameter optimization Operator training and skill enhancement New machine purchases Cup design or raw material changes			ent, coating, and assembly processes		
Signatories:		Project Timeline:			
Mr.Hamid Akther Mr.Daniel Mendoza		6 Months			

MEASURE PHASE

Data collection - Histogram (Before improvement)

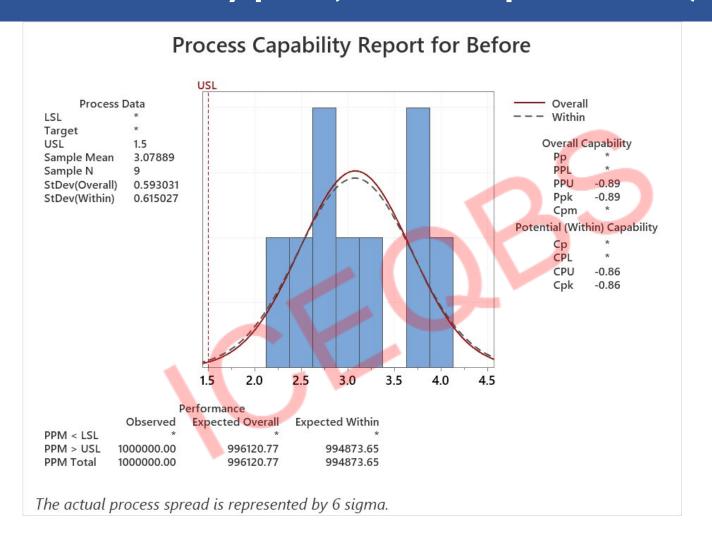
Inference:

•Data is normally distributed over the mean


Data collection - Run Chart (Before improvement)

Inference:

P > 0.05 - No special causes in the process. Data can be used for further analysis


Data collection - Normality plot (Before improvement)

Inference:

•P > 0.05 in all scenarios, thus all the data is normally distributed

Data collection - Normality plot (Before improvement)

Inference:

The process is not capable, as all output values exceed the USL and capability indices (Ppk/Cpk) are negative, indicating severe misalignment with specifications.

Fish Bone Diagram

Visual inspection subjectivity

Infrequent sampling

Incorrect sealing temperature Inadequate operator training High ambient humidity Improper dwell time Improper handling during collection Dust in production area Inconsistent pre-heating Negligence during inspection Temperature fluctuation Lack of standardized SOP Inconsistent process setup Poor lighting No leak test frequency defined Lack of accountability Inadequate ventilation near heaten MAN **METHOD ENVIRONMENT MEASUREMENT MACHINE MATERIAL** Leak test inconsistency Sealing element wear Poor PE coating uniformity **Uncalibrated gauges** Inconsistent temperature control Variation in paper GSM Lack of data logging Air pressure variation

Misalignment of molds

Poor preventive maintenance

Contaminated paper surface

Incorrect bottom roll diameter

Paper moisture variation

Common Causes & Special Causes

Common Causes

- Inadequate operator training
- Improper handling during collection
- Negligence during inspection
- •Sealing element wear
- Poor preventive maintenance
- Poor PE coating uniformity
- Variation in paper GSM
- •Incorrect sealing temperature
- •Improper dwell time
- Inconsistent pre-heating
- High ambient humidity
- •Dust in production area
- Temperature fluctuation
- Visual inspection subjectivity
- Lack of standardized SOP

Special Causes

- •Inconsistent temperature control
- Air pressure variation
- Misalignment of molds
- Contaminated paper surface
- Incorrect bottom roll diameter
- Paper moisture variation
- •Lack of leak test frequency
- Uncalibrated gauges
- •Leak test inconsistency
- Lack of data logging
- Infrequent sampling
- Poor lighting
- •Inadequate ventilation near heater
- •Inconsistent process setup
- Lack of accountability

3M Analysis for Waste

MUDA

- Excess scrap of paper cups
- Overproduction
- Waiting time

MURA

- Inconsistent cup sealing
- Variable production output
- Irregular supply of raw materials

MURI

- Machine overloading
- Operators handling multiple machines
- Excessive manual labor

8 Wastes Analysis

Defects Overproduction

Cups leaking due to improper sealing.

Misprinted logos or labels on cups requiring rework or disposal.

Producing extra cups "just in case" without actual demand.

Running machines at maximum speed to finish a batch faster than needed

Waiting

Machine downtime due to paper roll jams or lack of material.

Operators waiting for maintenance staff to fix a defective sealing unit

Non-Utilized Talent

Operators not involved in problem-solving or improvement discussions.

Lack of training opportunities to enhance skill in precision machining.

Transportation

Moving paper rolls multiple times between storage and production.

Inventory

Transferring semi-finished cups between different machines instead of inline processing Stocking more paper rolls than needed for current production.

Storing large batches of finished cups due to irregular shipping schedules

Operators walking back and forth to fetch sealing glue or tools.

Reaching repeatedly for control panels that are not ergonomically placed

Applying extra coating or finishing steps not required for the product standard.

Inspecting every single cup manually when a sampling method would suffice

Motion

Overprocessing

Action Plan for Low Hanging Fruits

Muda (Waste)

•	Waste Type	Lean Tool	Action Plan	Benefit
	Supplier Quality Management	Inspect rolls on receipt; use approved suppliers	Fewer defects, higher product quality	Supplier Quality Management

Mura (Unevenness)

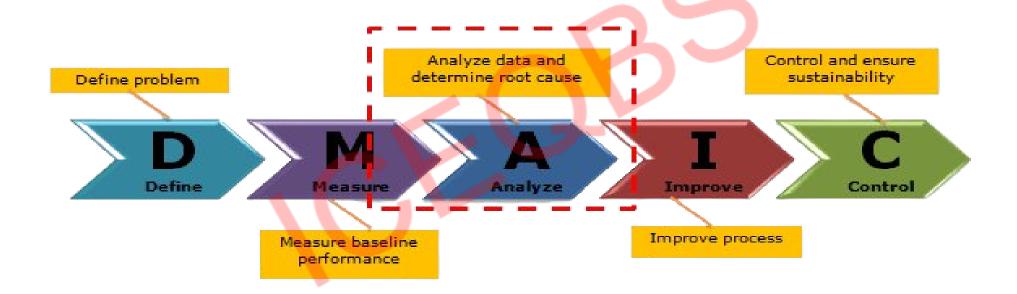
Issue	Lean Tool	Action Plan	Benefit
Variable cup output per shift	Standard Work & Visual Management	Visual boards for target output & clear SOPs	Smooth workflow, predictable production

Muri (Overburden)

Issue	Lean Tool	Action Plan	Benefit
Running sealing machine continuously at max speed	SMED / TPM	Schedule short machine breaks & maintenance; avoid continuous max load	Increased machine life, stable output

Action Plan for Low Hanging Fruits

Waste	Lean Tool	Action Plan	Benefit
Overproduction	Extra cups produced due to batch scheduling	Kanban / Pull System	Implement small batch production aligned with actual demand
Transportation	Moving semi-finished cups between machines	Layout Improvement	Rearrange line for inline flow
Motion	Operators walking long distances to fetch glue or tools	5S	Place tools and consumables near workstation
Overprocessing	Extra coating / inspection beyond standard	Standard Work	Define and enforce minimal required coating & inspection
Defects	Improper sealing temperature	5S & Standard Work	Standardize machine temperature settings & checklist before start
Waiting	Operators waiting for paper rolls or spare parts	5S & TPM	Organize material close to machine; maintain spare parts inventory


Top 12 Prioritized Root Causes (Based on Net Score)

Cause	Score
Sealing temperature variation	222
Paper roll quality	195
Misalignment of sealing jaws	195
Machine speed inconsistency	162
Machine maintenance frequency	162
Glue viscosity / quality	141
Operator skill level	140
Operator fatigue	140
Cup handling during transfer	135
Humidity in production area	135
Machine vibration	120
Batch size (overproduction)	105

Top 12 Root Causes from C&E Matrix

S. No.	Input / Root Cause (X)	What to Measure	Measurement Method	Frequency	Responsibility	Why Collect
1	Sealing temperature variation	Actual sealing temperature vs setpoint (°C)	Digital sensor reading	Hourly	Operator	To verify sealing consistency
2	Paper roll quality	GSM, coating uniformity, and moisture content	GSM tester, visual inspection	Per batch	QC	To identify effect of raw material variability
3	Misalignment of sealing jaws	Gap and alignment difference (mm)	Vernier / dial gau <mark>ge</mark>	Once per shift	Maintenance	To confirm sealing accuracy
4	Machine speed inconsistency	Variation in cycle speed (cups/min)	Machi <mark>ne</mark> data logger	Hourly	Production	To check for unstable operation
5	Machine maintenance frequency	Preventive maintenance performed as per plan	Maintenance record	Weekly	Maintenance	To correlate downtime with defect occurrence
6	Glue viscosity / quality	Viscosity (cP) and brand consistency	Viscosity cup / lab test	Per batch	QC	To ensure sealing quality
7	Operator skill level	Certification / training level	Training record review	Once	HR / Production	To correlate skill with defect %
8	Cup handling during transfer	% cups d <mark>ropped or damaged during transfer</mark>	Observation / tally count	Daily	Line Supervisor	To assess material handling effect
9	Humidity in production area	Relative humidity (%)	Hygrometer reading	Hourly	Production	To correlate environment with sealing performance
10	Operator fatigue	No. of hours worked without break	Shift log	Per shift	HR / Supervisor	To identify fatigue- related variation
11	Machine vibration	Amplitude level (mm/s)	Vibration sensor	Daily	Maintenance	To detect misalignment and wear
12	Batch size (overproduction)	No. of cups produced per batch vs demand	Production record	Per batch	Planner	To control overproduction waste

ANALYSE PHASE

Analyse - Hypothesis testing

Regression Equation

Leakage_% = -4.78 + 1.816 Sealing_Temp_Variation_C + 19.07 Jaw_Misalignment_mm + 0.5646 Machine_Speed_Variation_rpm + 0.001867 Glue_Viscosity_cP

Coefficients

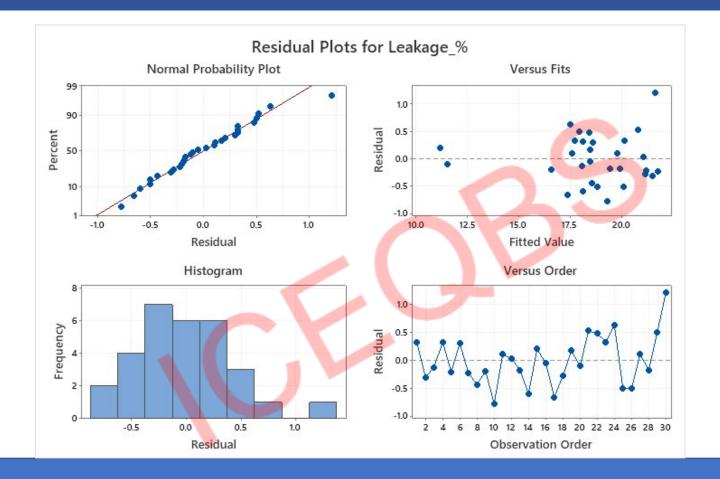
Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-4.78	1.52	-3.14	0.004	
Sealing_Temp_Variation_C	1.816	0.142	12.75	0.000	1.05
Jaw_Misalignment_mm	19.07	1.24	15.42	0.000	1.10
Machine_Speed_Variation_rpm	0.5646	0.0355	15.91	0.000	1.01
Glue_Viscosity_cP	0.001867	0.000661	2.83	0.009	1.15

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.472266	96.93%	96.44%	95.14%

Analysis of Variance

DF	Adj SS	Adj MS	F-Value	P-Value
4	176.253	44.0634	197.56	0.000
1	36.238	36.2383	162.48	0.000
1	53.007	53.0073	237.66	0.000
1	56.464	56.4642	253.16	0.000
1	1.780	1.7805	7.98	0.009
25	5.576	0.2230		
29	181.829			
	4 1 1 1 1 25	4 176.253 1 36.238 1 53.007 1 56.464 1 1.780 25 5.576	4 176.253 44.0634 1 36.238 36.2383 1 53.007 53.0073 1 56.464 56.4642 1 1.780 1.7805 25 5.576 0.2230	4 176.253 44.0634 197.56 1 36.238 36.2383 162.48 1 53.007 53.0073 237.66 1 56.464 56.4642 253.16 1 1.780 1.7805 7.98 25 5.576 0.2230

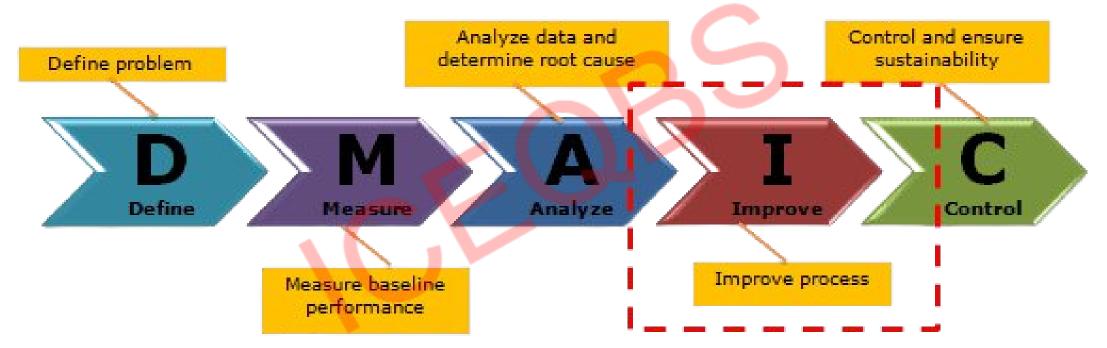

Fits and Diagnostics for Unusual Observations

Obs	Leakage_%	Fit	Resid	Std Resid
30	22.861	21.650	1.212	3.07 R

Inference:

•Since p < 0.05, thus not all means are equal

Analyse - Hypothesis testing


Inference:

•Both plots confirm that the residuals are normal, independent, and random — meaning the model fits the data well, and the underlying assumptions for regression or process analysis are satisfied.

Summary of Statistically validated Root causes

•Sealing Temperature Variation, Jaw Misalignment (Sealing Tool Alignment) and Machine Speed Variation are validated as critical root causes

IMPROVE PHASE

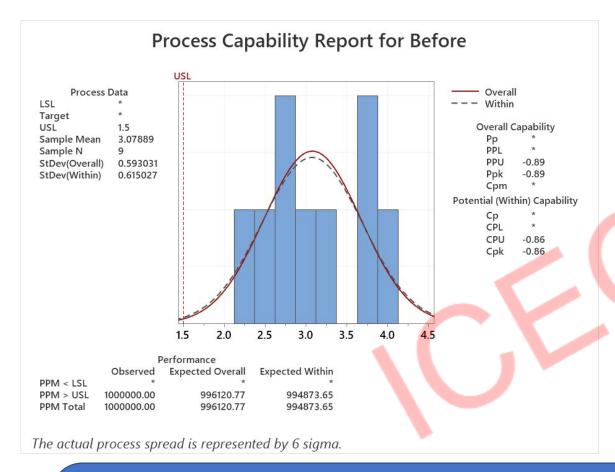
Improve

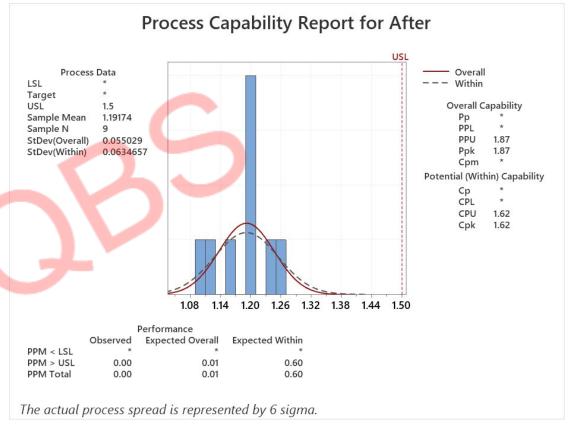
Root Cause	Improvement Action	Responsibility	Timeline
Sealing Temperature Variation	1. Standardize sealing temperature window (DOE to define optimum range). 2. Calibrate temperature sensors monthly. 3. Install temperature display & alarm for deviation ±5°C. 4. Train operators and display visual standards.	Process Engineer / QA / Maintenance	1–3 weeks
Jaw Misalignment (Sealing Tool Alignment)	1. Develop alignment check SOP and define gap tolerance. 2. Include jaw alignment check in daily start-up checklist. 3. Introduce PM schedule for jaw inspection/replacement. 4. Add poka-yoke for correct jaw positioning.	Maintenance / Production / QA	1–4 weeks
Machine Speed Variation	1. Conduct DOE to define optimum speed range for each product. 2. Lock speed control (password or key). 3. Record actual speed vs. leakage % in daily log. 4. Include drive system check in PM schedule.	Production / Maintenance / QA	1–3 weeks
Common Control Actions	1. Update SOPs and parameter sheets. 2. Maintain control charts for Leakage %. 3. Certify operators on "Critical 3 Xs". 4. Conduct Layered Process Audits weekly.	QA / Production Head	Continuous

Improve - Run chart and Normality Test (After Improvement)

Inference:

•Run chart - process is stable there is no special causes in the process (p value > 0.05)


Improve - Run chart and Normality Test (After Improvement)



Inference:

•Normality test - Data are normally distributed

Improve - Process capability - Before & After Improvement

Inference:

- •Before Cpk < After Cpk, which shows process is much more capable after improvement
- •There is less variability in system since stdev reduced after improvement
- After improvement the data are normally distributed near the target within specified limit

Improve –After Improvement (Statistical validation for Improvement – Hypothesis Testing)

Two-Sample T-Test and CI: Before, After

μ₁: population mean of Before

μ₂: population mean of After

Difference: $\mu_1 - \mu_2$

Equal variances are not assumed for this analysis.

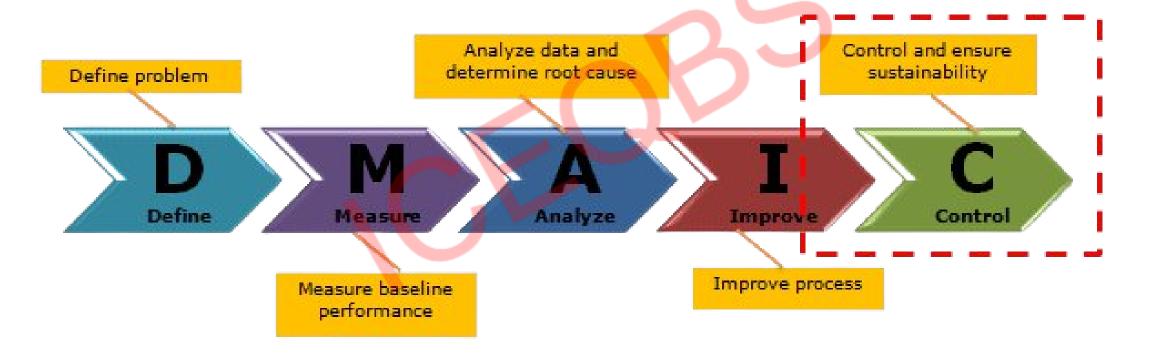
Descriptive Statistics

Sample N		Mean	StDev	SE Mean	
Before	9	3.079	0.593	0.20	
After	9	1.1977	0.0500	0.017	

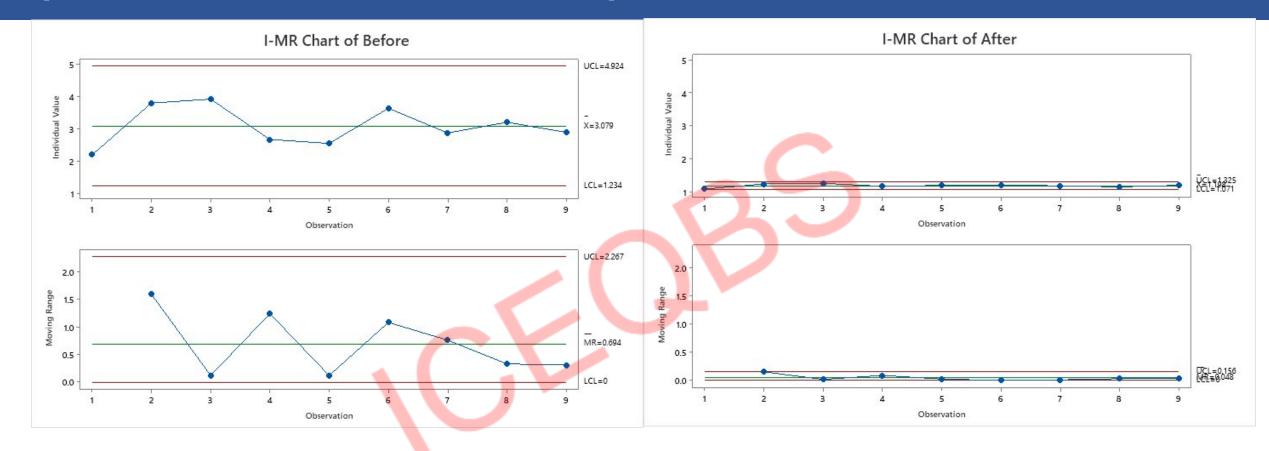
Estimation for Difference

	95% CI for
Difference	Difference
1.881	(1.424, 2.339)

Test


Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$

T-Value	DF	P-Value
9.48	8	0.000


Inference:

- •Since P value is less than 0.05, there is enough evidence to reject the null hypothesis and we can conclude that the difference between the population means is statistically significant.
- •It is also visible from the individual value plot & box plot, there is clear difference in mean after improvement which is closer to required % scrap

CONTROL PHASE

Improve (Statistical validation for Improvement – I-MR Chart)

Inference:

•As seen in control chart, before improvement mean was high and there was high variability. After improvement, it has achieved the desired target

5S Step	Application Area	Key Actions for Sustaining Improvements
1. Sort (Seiri)	Machine area & tool shelves	 Remove unused sealing jaws, tools, or glue containers. Discard expired glue, damaged paper rolls, and old thermocouples.
2. Set in Order (Seiton)	Machine control panel & workbench	• Color-code temperature controllers and mark standard sealing temperature range. • Designate fixed storage for alignment gauges, torque wrenches, and thermometers. • Create visual layout for sealing machine tools.
3. Shine (Seiso)	Sealing jaws & machine surfaces	 Daily cleaning of sealing jaws to prevent glue or paper dust buildup. Use a "Clean-Check-Start" tag system before production. Include visual inspection for misalignment signs during cleaning.
4. Standardize (Seiketsu)	All critical process areas	• Display standard parameter sheets (Temperature, Speed, Pressure) near machines.• Develop visual SOPs showing "OK" vs "Not OK" sealing patterns.• Checklist for PM, cleaning, and start-up inspection.
5. Sustain (Shitsuke)	Operator behavior & audits	 Monthly 5S audit with scoring system. Reward top- performing lines with "Zero Leakage" recognition. Conduct refresher training every quarter.

Area	Potential Error	Poka-Yoke Mechanism	Expected Benefit
Sealing Temperature Setting	Wrong temperature input by operator	 Use programmable logic controller (PLC) with preset temperature limits (e.g., 175–185°C). Password protection for parameter change. 	Prevents overheating / underheating leading to leakage.
Jaw Alignment	Misalignment after changeover	• Dowel pins or asymmetrical mounting holes for correct alignment. • Visual alignment indicator mark on both jaws.	Ensures uniform sealing pressure.
Glue Application	Excess or insufficient glue	 Install glue flow sensor or restrictor nozzle with fixed orifice. Visual indicator for glue level. 	Maintains consistent seal bonding.
Machine Speed	Excessive speed change	 Mechanical stopper or VFD password protection to restrict range. LED indicator for speed out of range. 	Ensures adequate sealing time.
Paper Roll Loading	Wrong orientation or damaged roll	 Orientation mark on paper roll core. Sensor to detect edge tear or roll joint. 	Reduces poor seal due to paper misfeed.
Preventive Maintenance	Missed PM schedule	 Tag-based PM reminder or digital alert system. Machine will not start if PM due not cleared. 	Sustains machine stability and repeatability.

Process Step / Change	Potential Failure Mode	Potential Effect(s) of Failure	S (1–10)	Potential Cause(s)	Current Controls	O (1–10)	Detection Method	D (1–10)	RPN	Recommended Action(s)	Responsibili ty	i Target Date
Standardizing sealing temperature window	Operators continue using old temperature settings	Leakage persists / customer complaints	X	ot awareness	Verbal instructions, training	6	Periodic QA checks	6	288	machine hrietings at	Production Supervisor / QA	2 weeks
Calibration of temperature sensors	Calibration not done as per plan	Incorrect temperature reading; wrong seal strength	9	schedule, workload missed	Informal maintenance planning	5	Audit of calibration records	5	225	Create formal calibration plan, use calibration due stickers, include in PM checklist and internal audit	Maintenance Head / QA	1 month
Installing temp/speed alarms & locks	Alarm limits not correctly set or bypassed	Machine runs outside validated window without action	8	Wrong alarm set points, password shared to all		4	Review alarm logs, occasional audits	6	192	Freeze alarm set points, restrict password to engineer, review alarm history weekly, disciplinary policy for bypass	Process Engineer / Production Head	1 month
Jaw alignment SOP & daily checklist	Alignment check skipped or done superficially	Misaligned jaws → leakage spikes	8	Time pressure, no ownership, checklist becomes paperwork	Paper checklist	6	Random QA/ supervisor audits	5	240	Convert to Layered Process Audit item; checklists to be reviewed and signed by supervisor; link to performance KPI	QA Manager / Line Supervisor	3 weeks
Poka-yoke for jaw mounting	New jaw design not used or incorrectly fitted	Continued misalignment despite new design	7	old laws lack of	Tool room control	4	Physical inspection during PM	5	140	Scrap / quarantine old jaw designs, train operators on new design, color-code new jaws	Maintenance / Tool Room	

Process Step / Change	Potential Failure Mode	Potential Effect(s) of Failure	S (1–10)	Potential Cause(s)	Current Controls	O (1–10)	Detection Method	D (1–10)	RPN	Recommended Action(s)	Responsibili ty	Target Date
DOE-based speed & temp settings	DOE results not translated into simple standards	Confusion on correct settings; frequent deviation	7	DOE report too technical, not simplified	Technical report in QA files	5	Only engineer understands settings	7	245	Convert DOE output into simple "Parameter Card" with clear ranges, photos of good/defective seal; train operators	Process Engineer / QA	2 weeks
5S implementation around sealing station	5S deteriorates after initial drive	Tools misplaced, wrong tools used, contamination	6	No regular audit, low management interest	Initial 5S drive only	6	Visual observation, audits (if any)	6	216	Monthly 5S audit with score, display results, simple	Production Manager	1–2 month s
Data logging of speed, temp & leakage	Data not recorded or recorded inaccurately	No evidence of control, cannot detect drift	/	Manual entry, lack of disci <mark>pl</mark> ine	Occasional logbook	6	QA review of logbook	6	252	Standard log format, random cross-check (log vs actual display), explore simple digital logging, train on "why"	QA / Supervisors	1 month
Operator training on "Critical 3 Xs"	Inadequate training / no skill certification	Operators don't understand impact on leakage	8	Rushed induction, no assessment	One-time class	5	Observation, rejections trend	6	240	Formal training module, short written/practical test, create skill matrix, allow only certified operators on critical lines	Training Coordinator / Production Head	1–2 month s
Preventive maintenance on drive & jaws	PM not followed; only breakdown maintenance	Speed fluctuation and misalignment recur	9	PM not prioritized, spares not available	Basic PM list	4	PM completion report review	5	180	Lock PM in calendar, track PM completion %, hold monthly review, maintain minimum spares for jaws, belts,	Maintenance Manager	1 month

Sustainment Guidelines

- •Maintain I-MR or P-charts for Leakage % trend monitoring.
- Conduct Layered Process Audits to ensure adherence to settings.
- •Include sealing parameters in **Start-up Approval Sheet** for each batch.
- Link operator performance and quality bonus to "Zero Leakage" metric.
- •Conduct monthly review meetings with QA, Production, and Maintenance.

Conclusion

Results after improvement

 Project has achieved its intended results after improving Leakage Rate by identifying the variation cause and reducing rejection rate.