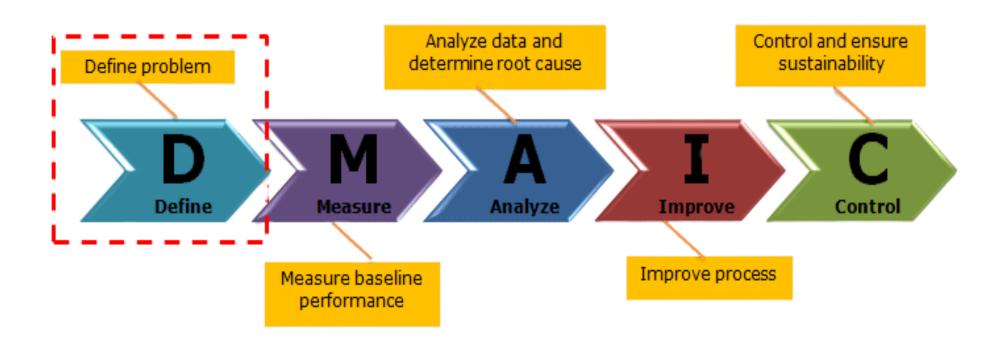


Scrap reduction in CNC Machining in Aerospace Component Manufacturing

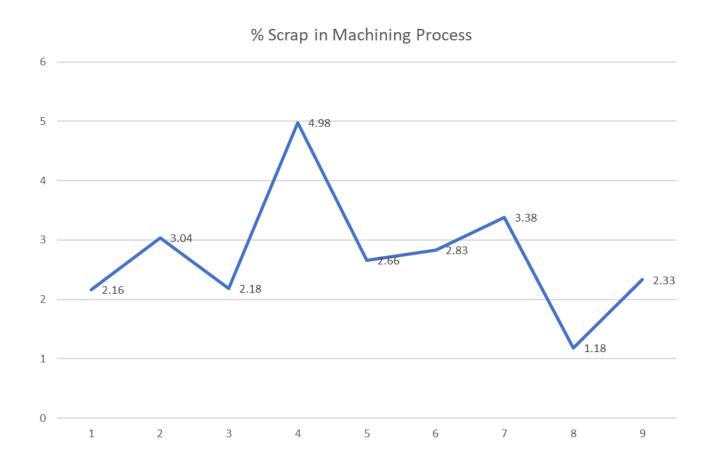
OVERVIEW


Background

- In Manufacturing of aerospace component, frequent machine breakdowns and quality rejections have caused production loss of approximately 60 hours per month, leading to:
 - Output loss: ~₹3.5 lakhs/month
 - Increased maintenance costs and rework labor hours
 - Missed delivery commitments to customers
- By improving machine uptime and reducing rejections, the company can save ₹2.5–3 lakhs per month, increase throughput, and strengthen customer confidence in quality and delivery reliability.

DEFINE PHASE

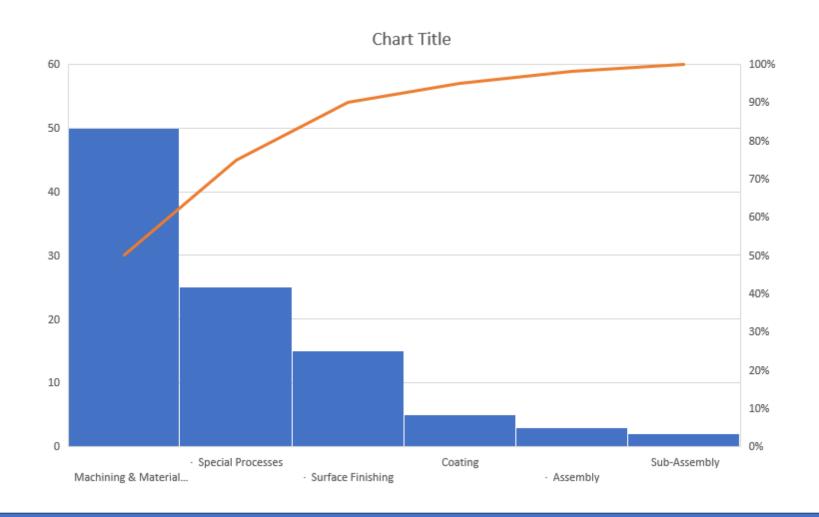
VOC & CTQ



CTQ Tree:

Voice of customer	Critical to X	Primary Metric for improvement
We need dimensionally accurate, defect-free machined parts that meet tolerance and quality requirements consistently."	CTC — Cost	Primary Metric - Y = % Scrap in machining process Secondary Metric - Productivity

Baseline Performance of Primary Metric (9 months data as Line chart)



Inference:

 Last 9 months scrap percentage data shows a significant variation and hence ideal problem to be taken up as a Six Sigma Project.

Pareto chart

Inference:

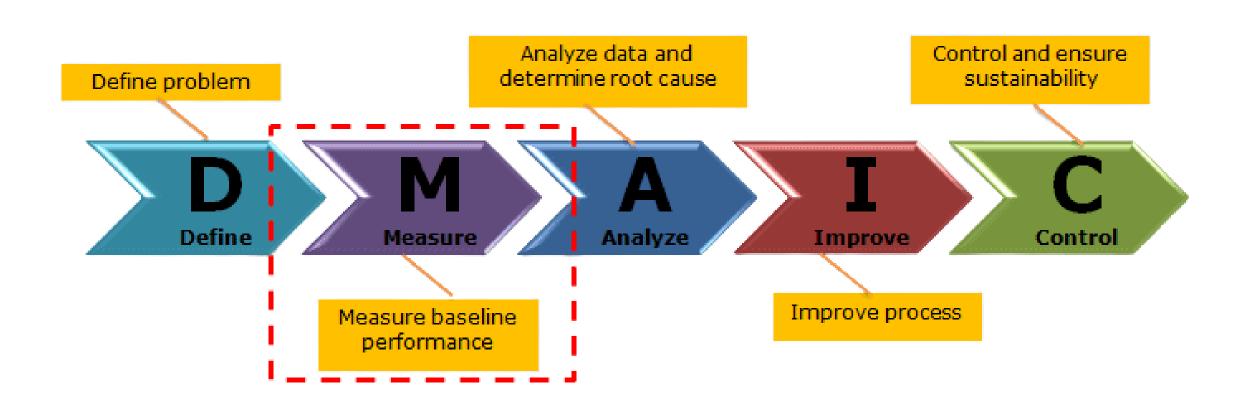
Machining Process contributes substantially for the scrap and included in the scope of the project

SIPOC

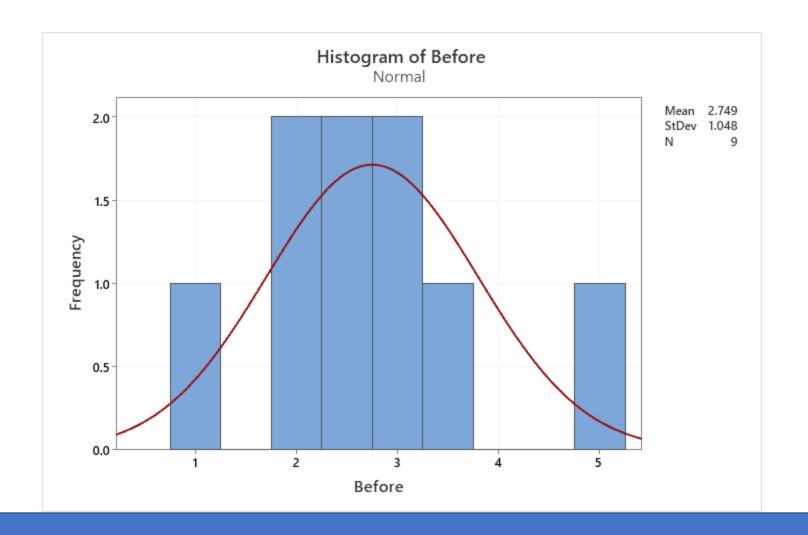
Suppliers (S)	Inputs (I)	Process (P)	Outputs (O)	Customers (C)
Raw material suppliers	Aerospace-grade raw materials (Titanium, Al, composites)	 Receive raw material Setup machining parameters CNC machining (turning, milling, drilling, grinding) In-process inspection Handling & transfer 	Machined aerospace parts Scrap (defective parts)	Internal: Assembly, Surface Treatment, QC External: OEMs (Airbus, Boeing, HAL), MRO, Regulators
Tooling suppliers	Cutting tools, jigs, fixtures		Dimensionally accurate parts	
Maintenance department	Machine availability, calibration		Reduced scrap % (from 3% → 1%)	
Operators / Machinists	Skilled manpower, standard operating procedures		Inspection reports, process data	
Quality department	Inspection standards, gauges, CMM programs		Customer satisfaction (quality + delivery)	

Project Charter

	Reduction of Scrap% in Machining process from 3% to 1%
Project Leader	Project Team Members:
	R. Kumar
Sai Prudhvi Pinupolu	P. Reddy
	S. Naresh
	M. Harsha
Champion/Sponsors:	Key Stake Holders
Plant Head – Production	Production Department Maintenance Team Quality Department Suppliers / Vendors
Problem Statement:	Goal Statement:
Scrap in machining process is very high (@ 3 %) based on the the last 9 months	e data for Reduce the scrap in machining process from 3% to 1% within 6 months.
Secondary Metric	Assumptions Made:
Productivity	50% of scrap comes from Machining process as per sample

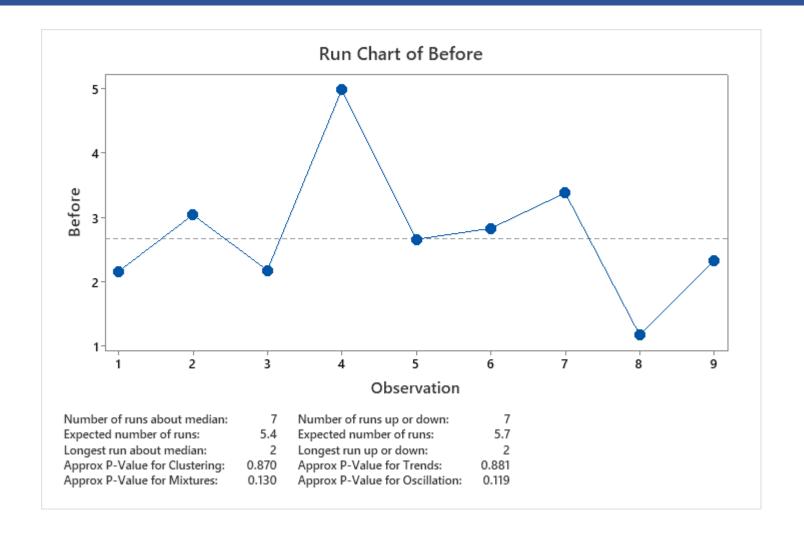

Project Charter

					ROW ANNIVERSARY
Tangible and Intangible					
Benefits:		Risk to Success:			
Estimated saving = • \$ 200,000 Other benefits — • Customer Satisfaction • Accuracy on delivery time In Scope:		Out of Scope:			
Machining and material renoperations (turning, milling, within aerospace components)	drilling, grinding)		Treatment, coating, an	nd assembly processes	
Signatories:		Project Timeline:			
Project Head : Shaiek Salman		6 Months			
Sponsor : Ali		Stages	Start	End	
		Define	1st January 2022	31st January 2022	
Master Black Belt : Annamalai		Measure	1st February 2022	28 th February 2022	
		Analyze	1st March 2022	15 th April 2022	
Finance Representative :		Improve	16 th April 2022	31 st May 2022	
		Control	1 st June 2022	30 th June 2022	



MEASURE PHASE

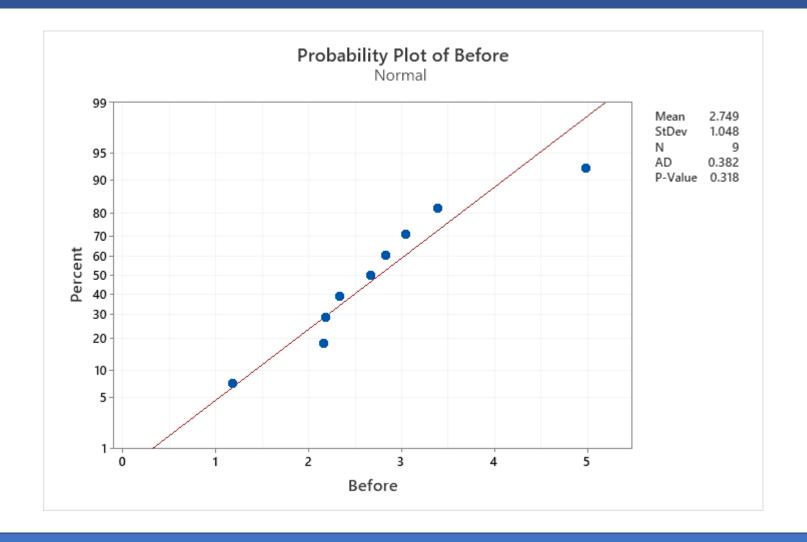
Data collection – Histogram (Before improvement)



Inference:

• Data is normally distributed over the mean

Data collection – Run Chart (Before improvement)



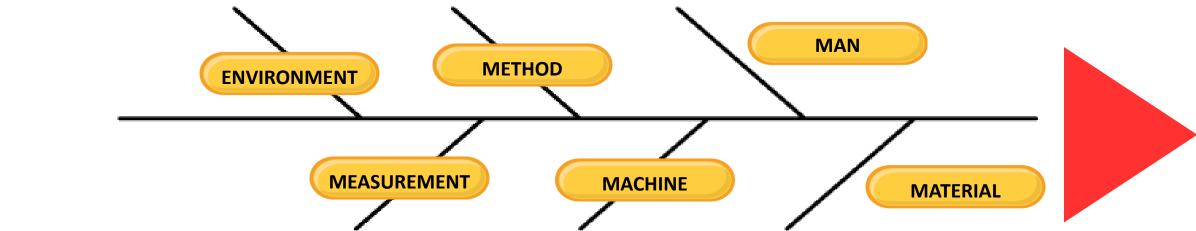
Inference:

P > 0.05 - No special causes in the process. Data can be used for further analysis

Data collection – Normality plot (Before improvement)

Inference:

• P > 0.05 in all scenarios, thus all the data is normally distributed


Fish Bone Diagram

- 1. Temperature variations on shop floor affecting tolerance.
- 2. High humidity causing corrosion on workpiece/tools.
- Poor lighting at workstations leading to inspection misses.
- 4. Dust/contamination in machining area.
- Inadequate ergonomics leading to operator fatigue/errors.

- 1. Incorrect machining parameters (feed, speed, depth of cut).
- 2. Poor clamping / fixturing methods causing part movement.
- 3. Lack of standardized work instructions for complex parts.
- 4. Ineffective process control plans.
- 5. Inefficient sequencing of machining operations

- 1. Operator skill variation in CNC setup.
- 2. Inconsistent adherence to SOPs.
- 3. Fatigue and human error during long shifts.
- 4. Insufficient training on aerospace tolerances.
- 5. Communication gaps between operators and quality inspectors.

- Inaccurate gauges or worn-out measuring instruments.
- 2. CMM program errors or misalignment.
- 3. Lack of gauge R&R validation.
- 4. Environmental effects on measurement (temperature drift).
- 5. Inconsistent inspection practices among inspectors.

- 1. CNC machine tool wear or spindle run-out.
- 2. Improper machine calibration / alignment.
- 3. Inadequate preventive maintenance schedules.
- 4. Coolant system malfunction leading to poor surface finish.
- 5. Vibration in machines affecting dimensional accuracy.

- L. Variation in raw material hardness (different heat lots).
- 2. Micro-cracks or porosity in incoming material.
- 3. Surface defects on raw stock before machining.
- Inconsistent grain structure in alloys.
- 5. Wrong grade of material supplied or mixed batches.

3M Analysis for Waste

MUDA

- Reworking parts due to out-of-tolerance machining.
- Excessive material scrap from trial cuts and tool offsets.
- Waiting time for inspection approval before moving to the next operation.

Mura

- Variation in cycle time between operators for the same CNC program.
- Inconsistent surface finish quality across different machining shifts.
- Fluctuations in raw material hardness from different suppliers/lots.

Muri

- Overloading operators with multiple machines simultaneously.
- Forcing cutting tools to run beyond recommended life, causing tool breakage.
- Running machines continuously without scheduled maintenance, leading to sudden breakdowns.

8 Wastes Analysis

Defects

- Parts scrapped due to out-of-tolerance dimensions.
- Surface defects like scratches, chatter marks, or poor finish.

Overproduction

- Producing extra machined parts "just in case" customer orders increase.
- Running trial cuts in excess before stabilizing CNC settings.

Waiting

- CNC operators waiting for quality inspection clearance.
- Machines idle due to delayed raw material issue from stores.

Non-Utilized Talent

- Operators not involved in problem-solving or improvement discussions.
- Lack of training opportunities to enhance skill in precision machining.

Transportation

Unnecessary movement of semi-finished parts between machining centers.

Long-distance movement to CMM lab for inspection.

Inventory

Overstock of cutting tools and inserts not immediately required.

Excess WIP (work-in-progress) parts piled near machines.

Motion

Operators walking repeatedly to fetch gauges or tools.

- Manual handling of heavy parts without fixtures or trolleys.
- **Overprocessing**
- Multiple re-cuts to achieve tolerance due to unstable setup.
- Extra polishing of surfaces beyond customer requirement.

Action Plan for Low Hanging Fruits

Special Causes (sudden failures / abnormalities)

Issue Observed	Lean Tool	Action Plan	Benefit
Sudden CNC spindle failure	TPM (Total Productive Maintenance)	Implement preventive maintenance schedule and operator-led daily checks	Reduced downtime, stable machining accuracy
Coolant system breakdown	Visual Controls + TPM	Add coolant level indicators and checklists	Avoid surface defects, improve tool life
Out-of-spec raw material batch	Incoming Quality Control (Poka Yoke)	Strengthen supplier certification and incoming lot checks	Fewer rejections, reduced scrap
CMM program crash	Standardized Work	Create validated backup CMM programs	Faster recovery, less delay
Abrupt power fluctuation	Andon System + Backup	Install voltage stabilizers and surge protectors	Avoid unexpected stoppages

Action Plan for Low Hanging Fruits

Muda (Waste)

Waste Type	Lean Tool	Action Plan	Benefit
Rework due to defects	Poka-Yoke	Error-proof clamping and tool offset checks	Lower rework hours
Waiting for inspection	Point-of-Use Inspection	Provide in-line gauges / go-no-go tools at CNC	Reduced waiting time

Mura (Unevenness)

Issue	Lean Tool	Action Plan	Benefit
Variation in cycle times	Standard Work + SMED	Standardize CNC setup parameters and quick-change tooling	Consistent productivity
Inconsistent finish quality	SPC Control Charts	Monitor process stability and provide operator feedback	Stable surface quality

Muri (Overburden)

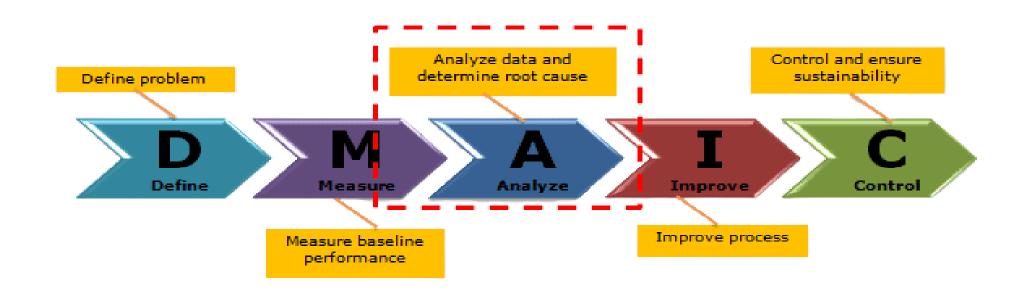
Issue	Lean Tool	Action Plan	Benefit
Overused cutting tools	Kanban for Tool Change	Visual tool life tracking and Kanban cards	Prevents tool breakage, reduces scrap
Operators overloaded	Work Balancing / Line Balancing	Redistribute machine responsibilities	Reduced errors, improved focus

Action Plan for Low Hanging Fruits

Waste	Lean Tool	Action Plan	Benefit
Overproduction	Kanban Scheduling	Produce only to customer demand	Lower WIP, reduced scrap risk
Transportation	Cellular Layout	Group machines closer by sequence	Faster flow, less handling damage
Motion	5S	Place gauges and tools near point of use	Reduced operator walking time
Inventory	Pull System	Limit WIP using Kanban bins	Lower storage cost, better flow
Overprocessing	Standard Work	Eliminate extra polishing or redundant machining	Saves time & cost
Defects	Poka-Yoke	Error-proof setups and in- process checks	Scrap reduced from 3% → 1%
Waiting	Andon / Visual Boards	Signal delays to supervisors immediately	Quick problem resolution
Unused Talent	Kaizen Events	Involve operators in daily improvements	Engaged workforce, continuous ideas

Top 12 Prioritized Root Causes (Based on Net Score)

Root Cause	Score
Tool wear	306
Overuse of cutting tools	306
Cutting parameters	264
Vibration in machines	264
Machine calibration	258
CMM program errors	242
Operator skill variation	216
Fixturing/clamping	216
Raw material hardness variation	216
Raw material surface defects	216
SOP adherence	200
Gauge accuracy/calibration	200


Data Collection Plan

Output / Input	Type of Data	Measurement Method	Unit	Frequency	Responsibility
% Scrap (Primary Y)	Continuous	Scrap count / production log	%	Daily	Production Engineer
Surface Finish (Ra)	Continuous	Surface profilometer	μт	Daily	Quality Inspector
Tool Wear	Continuous	Tool inspection (flank/length wear)	mm	Daily	Operator / QC
Cutting Parameters (speed, feed, depth)	Continuous	CNC machine readout	rpm / mm/min	Daily	Production Engineer
Machine Vibration	Continuous	Vibration meter	mm/s	Weekly	Maintenance Eng.
Machine Calibration	Attribute	Calibration record	Yes/No	Monthly	Maintenance Eng.
Fixturing / Clamping Method	Attribute	Visual check / setup log	Std/Non-std	Daily	Operator
Raw Material Hardness	Continuous	Rockwell hardness tester	HRC	Lot-wise	QC Lab
Raw Material Defects	Attribute	Visual inspection	Pass/Fail	Lot-wise	QC Lab
Operator Skill	Attribute	Training record	Certified/Not	Once / operator	HR / Training
SOP Adherence	Attribute	Audit checklist	Yes/No	Weekly	Supervisor / QA
Gauge Calibration	Attribute	Calibration certificate	Pass/Fail	Monthly	QC
First Pass Yield (FPY)	Continuous	Production & inspection log	%	Daily	Production Engineer
On-Time Delivery (OTD)	Continuous	Planning report	%	Weekly	Planning Dept.

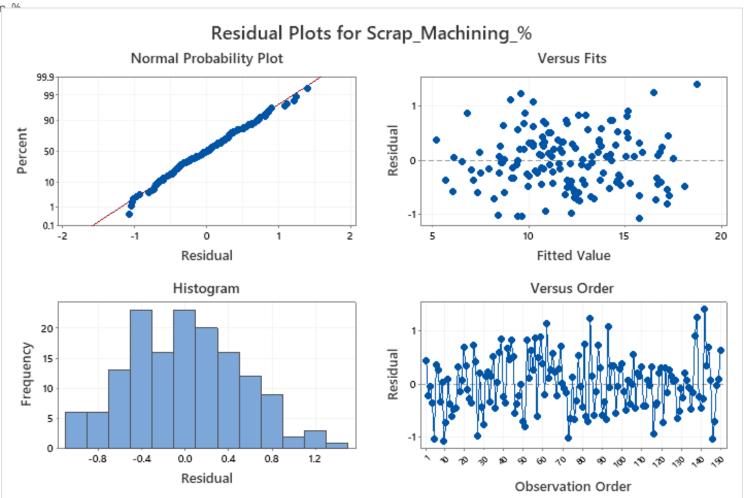
ANALYSE PHASE

Analyse – Hypothesis testing

Regression Equation

Scrap_Machining_% = 0.572 + 22.543 Tool_Wear_VB_mm + 0.19861 Tool_Life_Overrup_^4 + 0.4646 CutParam_Dev_%

Coefficients

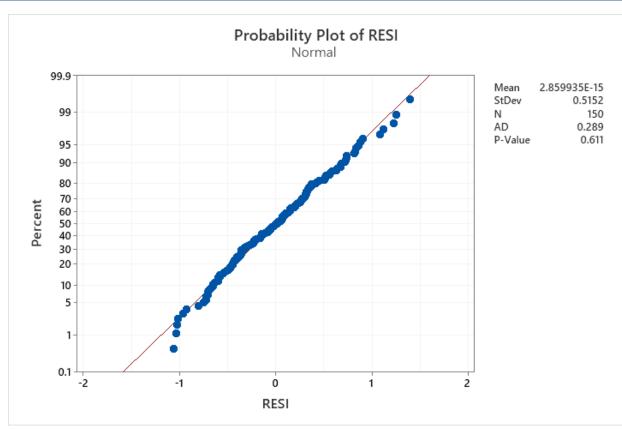

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	0.572	0.182	3.14	0.002	
Tool_Wear_VB_mm	22.543	0.815	27.68	0.000	1.00
Tool_Life_Overrun_%	0.19861	0.00419	47.45	0.000	1.01
CutParam_Dev_%	0.4646	0.0103	45.17	0.000	1.01

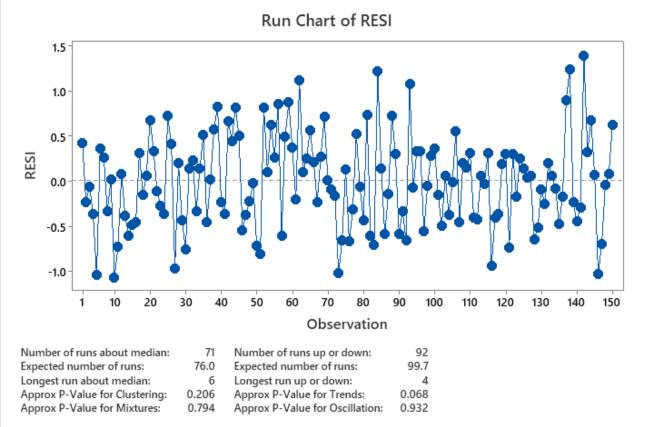
Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.520512	96.95%	96.89%	96.78%

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	1258.76	419.588	1548.68	0.000
Tool_Wear_VB_mm	1	207.52	207.524	765.96	0.000
Tool_Life_Overrun_%	1	610.11	610.114	2251.90	0.000
CutParam_Dev_%	1	552.69	552.692	2039.96	0.000
Error	146	39.56	0.271		
Total	149	1298.32			



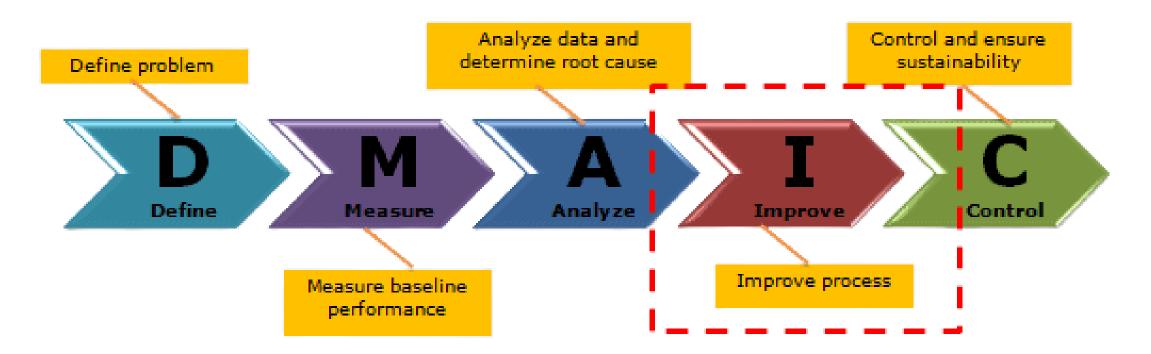

Inference:

• Since p < 0.05, thus not all means are equal

Analyse – Hypothesis testing

Inference:

Both plots confirm that the residuals are normal, independent, and random — meaning the model
fits the data well, and the underlying assumptions for regression or process analysis are satisfied.


Summary of Statistically validated Root causes

 Tool wear out, Over use of cutting tools and Cutting parameters are validated as critical root causes

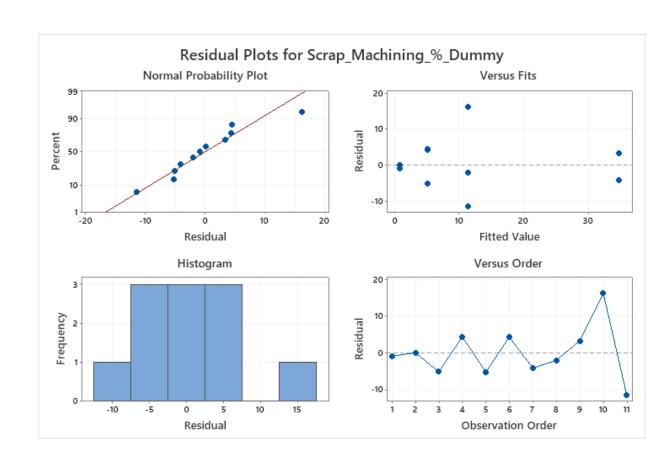
IMPROVE PHASE

Improve Design of Experiment

Run Order	Туре	A_ToolWear_ code	B_ToolLifeOv errun_code	C_CutParam Dev_code	Tool_Wear_V B_mm	Tool_Life_Ov errun_%	CutParam_D ev_%	Scrap_Machi ning_%
1	Factorial	1	1	-1	0.25	40	3	0
2	Factorial	-1	-1	-1	0.05	0	3	0.94
3	Factorial	-1	-1	1	0.05	0	13	0
4	Center	0	0	0	0.15	20	8	9.61
5	Factorial	1	-1	1	0.25	0	13	0
6	Center	0	0	0	0.15	20	8	9.43
7	Factorial	-1	1	1	0.05	40	13	30.68
8	Center	0	0	0	0.15	20	8	9.52
9	Factorial	1	1	1	0.25	40	13	38.14
10	Factorial	1	-1	-1	0.25	0	3	27.7
11	Factorial	-1	1	-1	0.05	40	3	0

Improve

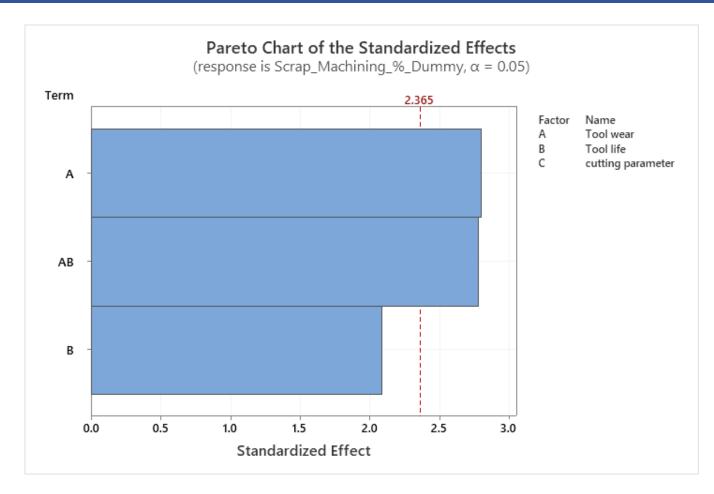
Factorial Regression: Scrap_Machining_%_Dummy versus Tool wear, Tool life, cutting parameter

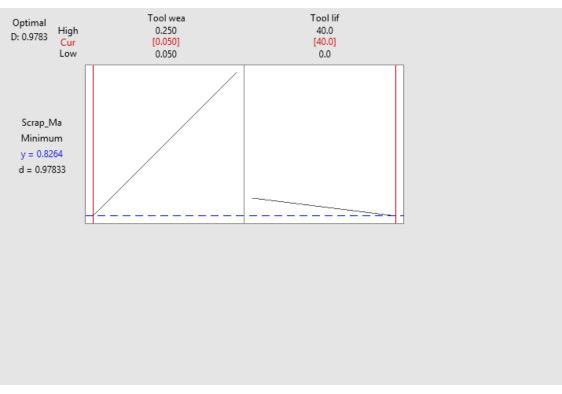

Term	Effect	Coef	SE Coef	T-Value	P-Value	VIF
Constant		11.46	2.60	4.41	0.003	
Tool wear	17.02	8.51	3.04	2.80	0.027	1.00
Tool life	12.68	6.34	3.04	2.08	0.076	1.00
Tool wear*Tool life	16.93	8.46	3.04	2.78	0.027	1.00

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
8.60876	73.96%	62.80%	54.67%

Analysis of Variance


Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	3	1473.50	491.166	6.63	0.019
Linear	2	900.59	450.293	6.08	0.030
Tool wear	1	579.02	579.020	7.81	0.027
Tool life	1	321.56	321.565	4.34	0.076
2-Way Interactions	1	572.91	572.911	7.73	0.027
Tool wear*Tool life	1	572.91	572.911	7.73	0.027



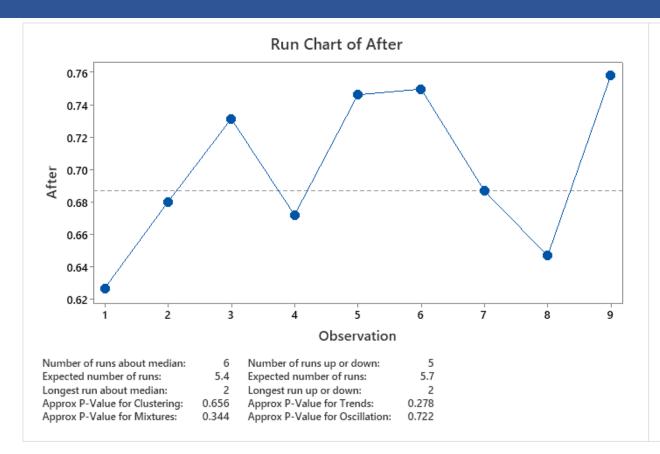
The regression model is statistically significant (p < 0.05). Both **Tool wear** and **its interaction with Tool life** significantly impact scrap machining %.

Improve

The Pareto chart shows that **Tool wear (A)** and the **interaction of Tool wear & Tool life (AB)** significantly affect scrap machining %, while Tool life (B) alone has a minor impact.

The optimization plot indicates that **minimum scrap** (≈0.83%) is achieved at **low Tool wear** (0.05) and **high Tool life** (40.0). The high desirability value (**D** = 0.9783) confirms that these settings provide the **optimal and statistically reliable process condition**.

Improve

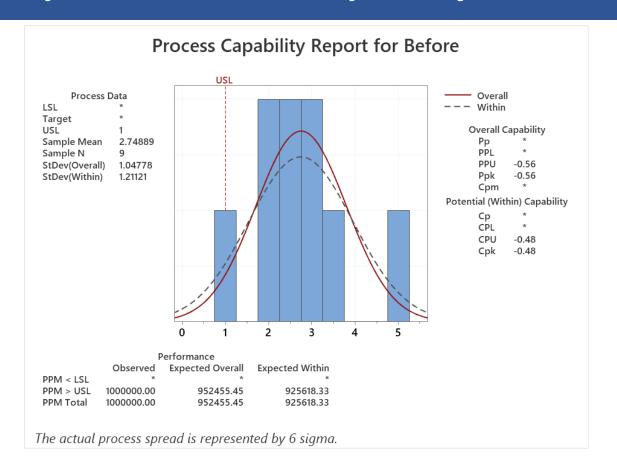

Inference:

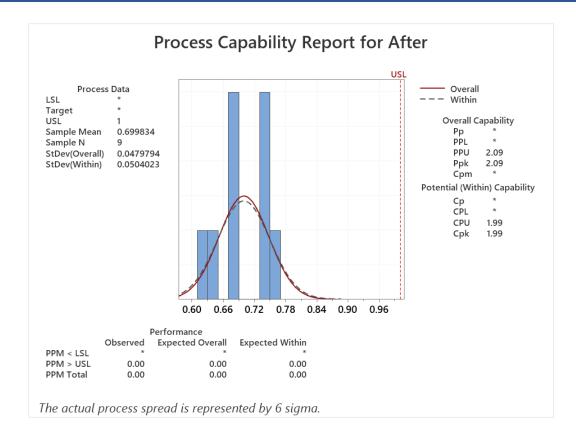
8 step validation

- Overall Model and individual p value is less than 0.05
- VIF is also less than 5
- R-Sq Adj is above 85 %
- Residual analysis Normality plot shows data is normally distributed, equal variance shows the random behaviour, Residual observation order run chart is OK and Histogram does not shows any outlies
- Since it is passing all the step regression equation is valid and XXX are critical input.

Improve – Run chart and Normality Test (After Improvement)

Inference:


• Run chart – process is stable there is no special causes in the process (p value > 0.05)


Inference:

Normality test – Data are normally distributed

Improve – Process capability – Before & After Improvement

Inference:

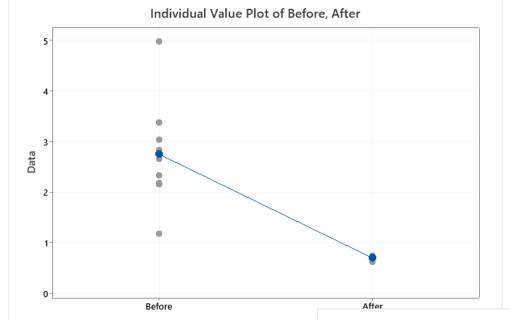
- Before Cpk < After Cpk, which shows process is much more capable after improvement
- There is less variability in system since stdev reduced after improvement
- After improvement the data are normally distributed near the target within specified limit

Improve –After Improvement (Statistical validation for Improvement – Hypothesis Testing)

Two-Sample T-Test and CI: Before, After

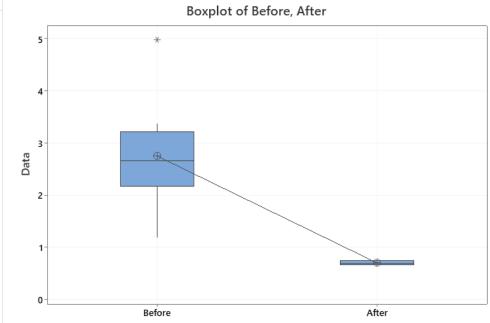
Descriptive Statistics

Sample	Ν	Mean	StDev	SE Mean
Before	9	2.75	1.05	0.35
After	9	0.6998	0.0480	0.016


Estimation for Difference

	95% CI for
Difference	Difference
2.049	(1.243, 2.855)

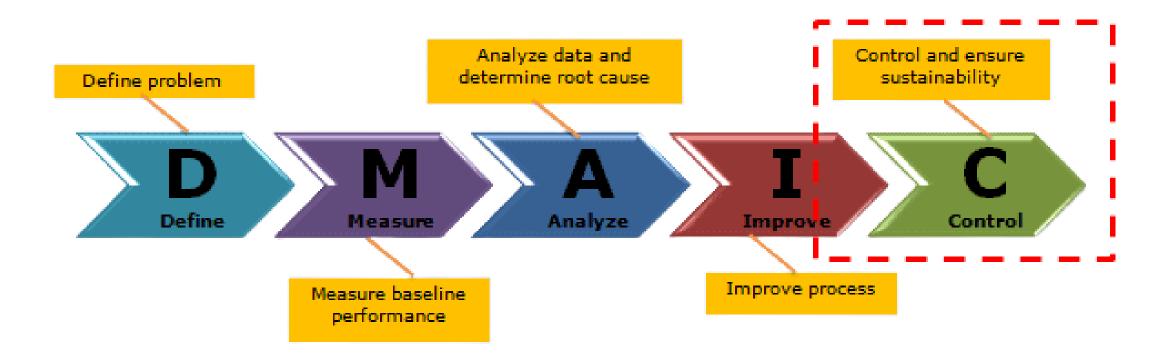
Test


 $\begin{array}{ll} \mbox{Null hypothesis} & \mbox{H_0: μ_1 - μ_2 = 0} \\ \mbox{Alternative hypothesis} & \mbox{H_1: μ_1 - μ_2 \neq 0} \end{array}$

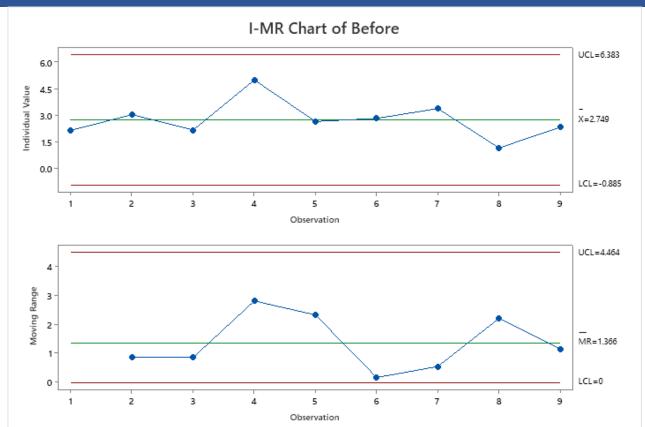
T-Value	DF	P-Value
5.86	8	0.000

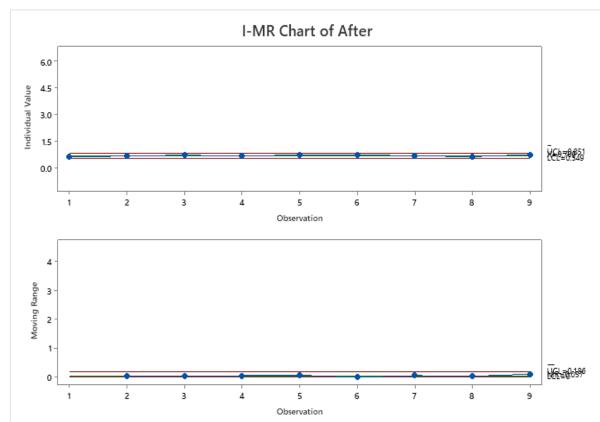
Inference:

- Since P value is less than 0.05, there is enough evidence to reject the null hypothesis and we can conclude that the difference between the population means is statistically significant.
- It is also visible from the individual value plot & box plot, there is clear difference in mean after improvement which is closer to required % scrap


FMEA

Process Step	Function / Requirement	Potential Failure Mode	Potential Effects	S	Potential Causes / Mechanisms	0	Current Controls (Prev/Det)	D	RPN	Recommended Actions (acceptance criteria)	Owner	Target	Residual S	Residual O
		Wrong												
		program/para	ООТ											
	Correct recipe		dims,		Wrong file,		Paper			DNC checksum & read-only CTQ				
Program load	& locked	drift from	scrap		manual edits,		signoff; 1st-			params; auto-compare to golden;				
(DNC)	parameters	recipe	spike	9	legacy offsets	5	off check	6	270	override timer ≤5 min with alarm	Mfg Eng	Week 1	9	2
Tool	Hold VB	Tool wear limit	Finish fail,		Extended run, hard material,		Visual checks; periodic VB			PLC interlock at VB 0.10/0.15	Ops /			
management	below limit	exceeded (VB)	burrs	8	no early signal	6	measure	6	288	mm; life counter tie-off; Andon	Maint	Week 2	8	2
Tool life control	Replace at/before limit	Tool life overrun	Chatter, OOT dims	7	Counter not reset; takt pressure	5	Manual log; shift review	7		Hard stop at +5% life; auto reset; reason code required to extend	Ops	Week 2	7	2
Tooling kitting	Correct insert/holder used	Wrong tool / insert grade	Rapid wear, surface finish fail	8	Kit mix-up,	3	Traveler check	6		Barcode/QR tool ID; presetters; poka-yoke nests	Tool Crib	Week 3	8	1
Tooming meening	0.000	Calibration					oo			pona yone neste				
	Maintain	drift after	ООТ		Crash, thermal		Monthly			Crash event → lock & re-cal;	Maint /	Immediat		
Machine health	geometry	crash	features	7	drift	3	ballbar	7	147	release only after report pass	QA	e	7	2
Vibration control	Keep RMS ≤	High vibration not acted	SF fail, burrs	6	Unbalance, bearing wear	4	Periodic check	6		Online sensor with email/andon at ≥4.5 mm/s; PM ticket autocreate	Maintena nce	Week 4	6	2
	Maintain		Wear 个,											
	concentration	Coolant out of	heat,		Doser fail,		Manual			Daily refractometer + auto-	Ops /			1
Coolant control	/рН	range	scrap	6	evaporation	5	titration	5	150	doser; SPC log; alarm bands	Chem	Week 2	6	2
	Verify	CMM program	False scrap /		Rev not		Programmer			Simulation + PPAP/FAI signoff;	СММ			
CMM program	datum/logic	mismatch	escapes	6	updated	3	review	5	90	GRR spot check on CTQs	Prog	Week 2	6	
	Reliable wear	High %GRR on	Wrong		Method		Ad-hoc			GRR ≤10%, work instruction, refs;				
MSA – VB	reading	VB	decisions	6	variation	4	checks	6	144	re-cal monthly	QA	Week 3	6	2
SI III A SOD	Follow new	Training gaps /		_	New limits not	_	- " . "	_	475	Cert check-off; job aids at	Superviso		_	
Skills & SOP	OCAP	non-adherence	reappear	/	learned	5	Toolbox talk	5	1/5	machine; LPA daily	r/HR	Week 2	/	2




CONTROL PHASE

Improve (Statistical validation for Improvement – I-MR Chart)

Inference:

- As seen in control chart, before improvement mean was high and there was high variability in the **Scrap reduction** and after improvement, it has achieved to target the Scrap reduction
- There is a significant reduction in Scrap reduction

Control Plan

Con	trol Pla	an (Ma	achining –	Aerospac	e Compon	ents)		
A. Char	acteristics	& Controls						
#	Process Step / CTQ	Characteris tic (X or Y)	Target / Spec (after DOE)	How to Measure (Gage)	Sampling / Frequency	Control Method	Owner	Reaction / OCAP (triggered when)
1	Final Part Quality	Y: % Scrap_Mac hining	Target ≤ 1.0% (alarm > 2.0% shift avg)	MES rejection log; confirmed by QA	Every lot + hourly roll- up	p-chart (by hour & shift); Pareto by defect	Superviso r / QA	If hour p-point above UCL or 2 consecutive > target → stop line, quarantine WIP, start short-term corrective action (STCA), notify ME & QA, run root-cause checklist.
2	Tooling – Finishing Ops	X1: Tool_Wear _VB_mm	VB ≤ 0.10 mm (finish); ≤ 0.15 mm (rough)	Microscope or on- machine probe; calibrated edge-wear gage	At setup, then every 30 min or every N parts (e.g., 20)	I-MR chart per tool family; tool-life counter	Operator / ME	If VB > limit or 2 point up-trend → change tool, verify part on next piece, log in tooling card; if repeat on same op → ME reviews feeds/speeds & cooling immediately.
3	Tool Usage	X2: Tool_Life_ Overrun_%	≤ 5% beyond recommended life	PLC life counter; MES tool table	Real-time; audit each change	Andon alarm at 3%; hard interlock at 5%	Operator / Maintena nce	≥5% blocks cycle start; replace tool; investigate reason (stock variance, coolant, parameter drift). Supervisor sign-off required to override.
4	CNC Parameters	X3: CutParam_ Dev_% (feed/speed /DOC deviation)	±2% vs. locked recipe (no manual overrides >102%)	CNC log vs. golden recipe; DNC compare	100% electronic; audit per shift	SPC checks on deviation; override logs	ME / Superviso r	Any override >102% for >5 min or recipe mismatch → revert to standard, run 1st-off inspection, log deviation; repeat in shift → lock program & escalate to PE.
5	Machine Health	Vibration_R MS_mm_s (leading indicator)	≤ 4.5 mm/s RMS	Vibration sensor	Weekly (or online)	Trend chart	Maintena nce	>4.5 or 20% jump week-over-week → PM task & rebalance check.
6	Calibration	Calibration _Error_µm	Per OEM spec; ballbar ≤ 10 μm critical axes	Laser/ballbar report	Monthly + after crash	Pass/Fail + trend	Maintena nce / Metrolog y	Fail → lock machine for critical features; re-calibrate before release.
7	Inspection Program	CMM_Prog _ErrorRate _%	= 0 (no program-related NCRs)	NCR tracking	Per NCR; weekly review	u-chart (if needed)	QA / CMM Prog	Any program-related NCR \rightarrow MRB, immediate program review, simulation, and GRR spot-check on feature.

Control Plan

B. Standardization & Mistake-Proofing

- •Recipe lock-down (DNC): Only approved NC programs; checksum compare at load; read-only parameters for CTQs.
- •Override governance: Max override 102% with time-based alarm; auto-revert after 5 minutes.
- •Tool-life interlocks: PLC blocks cycle start if Tool_Life_Overrun_% > 5%.
- •Visual controls: Tool wear limits posted at machine; green/yellow/red wear cards.
- •Poka-Yoke: Tool ID scanner ties the correct insert grade/geometry to the operation; wrong tool ID prevents cycle.

C. Measurement System Assurance (MSA)

- •Gauge R&R for Tool_Wear_VB_mm and CMM features (target %GRR < 10%; accept ≤ 20%).
- •Microscope/edge gage calibration: monthly; use certified artifacts.
- •CMM verification: daily artifact check (ring gauge / step gage), monthly full verification.

D. Preventive Maintenance (PM) & Specials

- •Coolant health: concentration & pH spec; test daily; alarm if out of range \rightarrow adjust & log.
- •Spindle & axis health: online vibration trending; weekly review; action at thresholds (see table).
- •Tooling PM: standardized regrind/replacement intervals aligned with VB limits; supplier COA for edge prep.

Control Plan

E. Layered Process Audits (LPA)

- •Daily (Supervisor, 5 min): recipe lock verified, overrides = 0, tool-life counter OK, wear check stickers current.
- •Weekly (ME/QA): SPC charts current (I-MR for VB, p-chart for scrap), top 3 defects Pareto, DOE settings still in control.
- •Monthly (Manager): audit adherence, training matrix, CAPA closure status.

F. Reaction Plan (OCAP – one page posted at machine)

- **1.Contain:** stop line if Y or X beyond limit; segregate WIP/FG since last good check.
- **2.Verify measurement:** quick re-check with a second gage/operator.
- **3.**Corrective action by trigger:
 - **1. VB over limit** \rightarrow change tool \rightarrow verify 1st-off, log cause.
 - **2.** Tool life overrun \rightarrow replace & reset life; review counter setup; check cycle counts.
 - **3. Parameter deviation** → reload golden recipe; lock overrides; run 1st-off.
- **4.Escalate:** if repeated within shift \rightarrow notify PE + Maintenance; raise **deviation ticket** in MES.
- **5.Document:** record root cause, parts at risk, disposition, and preventive change (parameter, PM, training).

G. Documentation & Change Control

- •SOPs updated with DOE-optimized settings & limits; revision controlled.
- •ECN/ECR process for any parameter/tooling change; verification run + capability check (Cpk \geq 1.33 for CTQs).
- •Training & certification: Operators re-certified on new limits; refresh every 6 months or after changes.

Conclusion

Results after improvement

 Project has achieved its intended results after improving thickness by identifying the variation cause and reducing scrap rate.